

ACCORDION receives funding from the European Union’s Horizon 2020 2020 research and innovation programme under Grant Agreement No. 871793

Adaptive edge/cloud compute and network continuum over a heterogeneous sparse
edge infrastructure to support nextgen applications

Deliverable D2.4

Data requirements analysis and collection

Ref. Ares(2020)8018924 - 31/12/2020

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 2 of 46

DOCUMENT INFORMATION
PROJECT

PROJECT ACRONYM ACCORDION

PROJECT FULL NAME
Adaptive edge/cloud compute and network continuum over a
heterogeneous sparse edge infrastructure to support nextgen
applications

STARTING DATE 01/01/2020 (36 months)

ENDING DATE 31/12/2022

PROJECT WEBSITE http://www.accordion-project.eu/

TOPIC ICT-15-2019-2020 Cloud Computing

GRANT AGREEMENT N. 871793

COORDINATOR CNR

DELIVERABLE INFORMATION

WORKPACKAGE N. | TITLE WP 2|Requirements & System Design

WORKPACKAGE LEADER HUA

DELIVERABLE N. | TITLE D. 2.4| Data requirements analysis and collection

EDITOR John Violos (ICCS)

CONTRIBUTOR(S)

Ioannis Korontanis (HUA), Stylianos Tsanakas (ICCS), Hanna
Kavalionak (CNR), Vangelis Psomakelis (ICCS), Zinelaabidine Nadir
(Aalto), Eduard Marin Fabregas (TID), Saman Zadtootaghaj (TUB),
John Violos (ICCS)

REVIEWER Massimo Coppola (CNR)

CONTRACTUAL DELIVERY DATE 31/12/2020

ACTUAL DELIVERY DATE 31/12/2020

VERSION 1.0

TYPE Report

DISSEMINATION LEVEL Public

TOTAL N. PAGES 46

KEYWORDS Data requirements; data collection

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 3 of 46

EXECUTIVE SUMMARY
The present document is the result of data requirements analysis and collection. It defines the quality
characteristics that good datasets should satisfy and the monitoring sources of data features. This document
summarizes all the preparatory work for data collecting that will be used by WP3 Edge infrastructure pool
framework, WP4 Edge/Cloud continuum management framework and WP5 Application management framework
for experimentation and evaluation.

In section 3, we describe the workflow of dataset construction including data filtering, aggregating and
representation. Next, in section 4 we summarize the various data features that have been proposed and used in
the literature of Edge and Fog computing in order to put intelligence or enhance the functionality of services like
fault tolerance, elasticity, workload balancing, VM migration and task offloading mechanisms. In section 5 we
introduce feature selection metrics widely used in the data science field in order evaluate the relation of a candidate
data feature with the target value. These feature selection metrics can help us to define the set of features that
should be monitored and used by each component.

Section 6 describes the software tools that the ACCORDION components and services require from the
infrastructure and application layers in order to collect the data. The main monitoring tool will be Prometheus
which uses a pull model to store metrics in a time series database. An additional manual monitoring tool has been
developed in python language in order to monitor resource usage in Raspberry pies.

In task 2.4 we had many discussions and intercommunication between partners in order to conclude which tasks
of the ACCORDION WP3, WP4 and WP5 have data requirements. Section 7 provides a description of the data
features and characteristics for the tasks that have data requirements. In section 8, we conclude the deliverable
and give the future direction that the consortium will follow in order to have timely qualitative data for
experimentation and evaluation.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 4 of 46

DISCLAIMER
ACCORDION (871793) is a H2020 ICT project funded by the European Commission.

ACCORDION establishes an opportunistic approach in bringing together edge resource/infrastructures (public
clouds, on-premise infrastructures, telco resources, even end-devices) in pools defined in terms of latency, that can
support NextGen application requirements. To mitigate the expectation that these pools will be “sparse”, providing
low availability guarantees, ACCORDION will intelligently orchestrate the compute & network continuum formed
between edge and public clouds, using the latter as a capacitor. Deployment decisions will be taken also based on
privacy, security, cost, time and resource type criteria.

This document contains information on ACCORDION core activities. Any reference to content in this document
should clearly indicate the authors, source, organisation and publication date.

The document has been produced with the funding of the European Commission. The content of this publication is
the sole responsibility of the ACCORDION Consortium and its experts, and it cannot be considered to reflect the
views of the European Commission. The authors of this document have taken any available measure in order for its
content to be accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated the creation and publication of this document hold any
sort of responsibility that might occur as a result of using its content.

The European Union (EU) was established in accordance with the Treaty on the European Union (Maastricht). There
are currently 27 members states of the European Union. It is based on the European Communities and the member
states’ cooperation in the fields of Common Foreign and Security Policy and Justice and Home Affairs. The five main
institutions of the European Union are the European Parliament, the Council of Ministers, the European
Commission, the Court of Justice, and the Court of Auditors (http://europa.eu.int/).

Copyright © The ACCORDION Consortium 2020. See https://www.accordion-project.eu/ for details on the copyright holders.

You are permitted to copy and distribute verbatim copies of this document containing this copyright notice, but modifying this
document is not allowed. You are permitted to copy this document in whole or in part into other documents if you attach the
following reference to the copied elements: “Copyright © ACCORDION Consortium 2020.”

The information contained in this document represents the views of the ACCORDION Consortium as of the date they are
published. The ACCORDION Consortium does not guarantee that any information contained herein is error-free, or up to date.
THE ACCORDION CONSORTIUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING THIS
DOCUMENT. DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 5 of 46

REVISION HISTORY LOG
VERSION No. DATE AUTHOR(S) SUMMARY OF CHANGES

0.1 15/03/2020 John Violos (ICCS) Proposed TOC
0.2 01/10/2020 John Violos (ICCS) Contributions to sections: 3.

Dataset construction process,
4. Data features, 6.2 Manual
Monitoring Resources, 6.3

Manual Monitoring
Geolocation, 7.5 Resilience

Policies & Mechanisms
0.3 01/11/2020 Stylianos Tsanakas (ICCS) Contributions to sections: 4.

Data features, 5. Feature
0.4 23/11/2020 Ioannis Korontanis (HUA)

Vangelis Psomakelis (ICCS),
Saman Zadtootaghaj (TUB)

selection

0.5 14/12/2020 Hanna Kavalionak (CNR) Contributions to sections: 6.1
Prometheus Monitoring Tool,

7.2 Data Storage,
0.6 17/12/2020 Zinelaabidine Nadir

(AALTO)
7.7 Dynamic QoE

0.7 19/12/2020 John Violos (ICCS) Assessment
0.8 20/12/2020 John Violos (ICCS) Contributions to
0.9 22/12/2020 John Violos (ICCS) section: 7.1 Resource

Indexing and Discovery
1.0 31/12/2020 John Violos (ICCS) Contribution to section: 7.3

Intelligent, Adaptive Resource
Orchestration

 DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 6 of 46

GLOSSARY
EU European Union

EC European Commission

H2020 Horizon 2020 EU Framework Programme for Research and Innovation

QOS Quality of Service

VM Virtual Machine

IoT Internet of Things

QOE Quality of Experience

DB Database

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 7 of 46

TABLE OF CONTENTS
1	 RELEVANCE TO ACCORDION .. 11	

1.1	 Purpose of this document .. 11	

1.2	 Relation to other workpackages .. 11	

1.3	 Structure of the document .. 11	

2	 Introduction .. 13	

3	 Dataset Construction process ... 15	

4	 Data features ... 17	

4.1	 Data Features related to Applications ... 17	

4.2	 Data Features related to Infrastructures ... 19	

4.3	 General data features .. 21	

5	 Feature selection ... 23	

6	 Monitoring Tools and Scripts .. 25	

6.1	 Prometheus monitoring tool ... 25	

6.2	 Manual Monitoring Resources ... 26	

6.3	 Manual Monitoring Geolocation .. 28	

7	 Association of Components with Data Features and their characteristics .. 29	

7.1	 Resource indexing & discovery .. 29	

7.2	 Edge storage .. 29	

7.3	 Intelligent, adaptive resource orchestration ... 30	

7.4	 AI-based network orchestration .. 30	

7.5	 Resilience Policies & Mechanisms ... 30	

7.6	 Privacy preserving mechanisms ... 32	

7.7	 Dynamic QoE assessment .. 32	

8	 Conclusions ... 35	

References ... 36	

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 8 of 46

APPENDIX A.	 Prometheus metrics .. 37	

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 9 of 46

LIST OF TABLES
Table 1 Metrics of Interest of manual monitoring tool …...27

Table 2. JSON of Profiling Features …...27

Table 3. Edge Storage Data Requirements ..…...29

Table 4. Fault Tolerance Data Requirements ..31

Table 5. Prometheus Metrics ..37

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 10 of 46

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 11 of 46

1 RELEVANCE TO ACCORDION

1.1 PURPOSE OF THIS DOCUMENT

The present document is the result of the collaborative effort of all ACCORDION partners participating in Task 2.4.
The objective of this task is to define the data characteristics and the sources of data that require the ACCORDION
components and services.

For each component and service that require data we define: the data type for each feature, if it is batch or stream,
and the update rates. In addition, we discuss what is an appropriate size of data and last but not least we provide
a set of feature selection metrics in order to filter out non-informative or redundant features.

The document offers the methodology in order to collect data from various sources, the available software that
monitor the data sources, how to integrate the data, and the preprocessing steps in terms of cleaning and
validating.

1.2 RELATION TO OTHER WORKPACKAGES

The task 2.4 Data requirements analysis and collection makes the necessary preparatory work in order to gather
the data will be used by the WP3 Edge infrastructure pool framework, the WP4 Edge/Cloud continuum
management framework and the WP5 Application management framework.

The WP3, WP4 and WP5 components, tasks, services, models, and any type of analysis that need data in order to
provide useful results and decisions should define their data requirements. The data requirements should be
derived based on the monitoring applications of ACCORDION project, the edge infrastructure and the deployed
applications.

1.3 STRUCTURE OF THE DOCUMENT

In section 2, we introduce the importance of data for decision making in edge fog computing and specifically in the
ACCORDION project. In section 3, we describe the workflow of dataset construction from the perspective of data
science tailored to the ACCORDION needs. Section 4 provides a long list of data features that have been used in the
literature of Edge, Fog and Mist computing. These features are mainly divided into features related to applications
and features related to infrastructures as described in the subsections 4.1 and 4.2 respectively. We also mention in
subsection 4.3 open data and cost as additional features. In order to evaluate and decide the most important
features for each task, we provide in Section 5 feature selection techniques based on the variable types.

Section 6 describes the monitoring tools we can use in order to retrieve data features from infrastructure nodes
and applications. Subsection 6.1 gives an overview of Prometheus monitoring tool, subsections 6.2 and 6.3 describe
the use of manual monitoring tools. In section 7, we provide for the WP3, WP4 and WP5 tasks a description of their
data requirements, specifically Resource indexing and discovery in subsection 71, edge storage in the subsection

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 12 of 46

7.2, intelligent, adaptive resource orchestration in subsection 7.3, resilience policies and mechanisms in subsection
7.5, privacy preserving mechanisms in subsection 7.6 and dynamic QOE assessment in subsection 7.7. The
ACCORDION tasks that do not have data requirements are not included in this list. Section 8 concludes the
deliverable.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 13 of 46

2 INTRODUCTION

Data are pieces of information that are used in order to work a service and provide useful functionalities. Before
the data era, data was just the input and the output of a service while the service could be modeled explicitly by
the knowledge experts and the developers. In data driven models, data are also used in order to provide the models
of the services. Data analysis and machine learning algorithms derive from models by training datasets. Afterwards,
these models are the core of the services.

Edge and cloud computing require data in order to orchestrate and administrate edge nodes, understand the users’
behaviors, profile the applications, capture the fluctuation in the workload and estimate the relations between
resource usage and deterioration of the Quality of Service (QOS) just to mention a few of the data driven
functionalities.

In the ACCORDION project data will not be used only for training models and evaluating their performance. Data
can be used for many different uses such as monitoring the connected devices, configuration files, state of Virtual
Machines (VM). In this document, we will summarize the data requirements mainly for the WP3, WP4 and WP5. In
addition, we will describe all the actions in order to construct quality datasets from raw data and the applications
for data gathering.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 14 of 46

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 15 of 46

3 DATASET CONSTRUCTION PROCESS

Dataset construction includes all the necessary actions in order to construct a quality dataset for a component,
task, service and analysis. In the rest of the document, we will use the term service to refer to all types of data uses.
Different components may share the same dataset or each component may have its own dataset. Generally,
speaking, we prefer to build datasets that cover the needs of different components, but most of the time different
components have different data requirements and we should avoid putting irrelevant data features together.

The dataset construction process tailored to the needs of Edge computing systems begins with the discussions
between the data science expert with the application owners and the infrastructure administrators. These
discussions are important to understand what features are need to be monitored for each component. The features
can be expressed in categorical (Qualitative) or numeric (Quantitative) types [1]. The categorical data types include
nominal which permit permutation of the values and ordinal which preserve an order in the values. The numeric
data types include the interval values and the ratio values. In internal values only the differences between values
are meaningful, while in Ratio values, both differences and ratios are meaningful.

In the case of training datasets, the amount of data we should gather depends on the complexity of the model and
the difficulty of the problem. There is no rule of thumb of the amount of data that is enough but some general
directions can be given. We need at least an order of magnitude more examples than trainable parameters in order
to avoid the curse of dimensionality. Complex models with high capacity need much more data than simple models.
If there are available studies in literature for similar tasks and use cases, we can also target for similar amounts of
data.

Data can be gathered from several sources, event monitoring applications such as Prometheus, IoT Sensors open
data, historic data files. Data can be in batch or stream format and may have different scales of density among the
features or time periods. This heterogeneity of data sources and rates makes data integration a difficult process.
The data wrangler should make decisions on how the data features should be aligned. Some general directions are
to use timestamps or the IDs of users and devices as key-values to join data records from different sources. The
timestamps may not be strict timestamps but a relative time frame in which two or more observations are recorded.

It is a common technique to discard some pieces of information in order to keep a smaller but reliable dataset.
When collecting data from several sources, the records can carry mistakes, bad feature values, duplicate or null
values. Setting the value ranges or the statistical properties of the values we can detect and filter out erroneous
values.

In the case of training predictive models with the dataset, we should pay attention to the skew between training
and testing. This means we may have different accuracy at training time than serving time and the reason is not the
underfitting or overfitting of the models. The reason may be that the data generators functions in the training
process may have different statistical characteristics of the data generator functions in the serving process. This
discrepancy in statistical characteristics can be subtle but it may have bad effects on the results. So, we should
make sure that the training set is representative of the serving traffic even if it means that we should enrich the
training dataset with new observations. A data augmentation process is not always recommended and we should
experimentally evaluate if it is applicable.

Data features can be classified into four categories depending on their type and the operations we can run on them.
Nominal data refers to attributes whose values can only be distinguished as equal or unequal to each other. They

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 16 of 46

belong to the “Categorical Variables” category and some examples could be “Semantic POI” or “Protocol of
Communication”. Another categorical attribute type is ordinal data, whose objects can also be ordered. This
includes data such as “Period of day” or “cloud customer satisfaction on a scale from 1-10”. Some operation
examples that can be run on nominal and ordinal data respectively are “entropy” and “median”

Aside from Categorical attributes, data can also be numeric. In this category attributes can either be characterized
as “Interval” or “Ratio”. In Interval attributes aside from ordering, the difference in values also has a clear meaning,
and can be calculated using addition/subtraction. Common examples would be “temperature in Celsius” or
“calendar dates”, and operations such as “mean” and “standard deviation” can be used. In Ratio variables, not only
the differences but also the ratios have meaning. We can use multiplication/division on the data, with notable
examples being “CPU usage” or “RAM usage”. “Geometric mean” and “percent variation” are some of the
operations that can be used in this type of data.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 17 of 46

4 DATA FEATURES

Different Cloud/Edge stakeholders may have different objectives and need different data features. In this section,
we provide an overview of data features used in research publications and technical manuscripts. The purpose of
listing the candidate features is to be a reference point to the ACCORDION partners and cloud/edge stakeholders.
First, we provide features related to applications and users. Next, we provide features related to infrastructure. In
the end, we enlist features that do not belong in the previous two categories. Many of the terms do not have a
formal definition and may have different uses in other documents. It is also important to mention that different
corporations, institutes and labs may have different definitions for this terminology.

In addition, some features exist in both application and infrastructure lists. This happens because the same term is
used in both cases but measures a different quantity. As example the feature of RAM in the context of application
means the RAM usage of the application that runs in an edge node. While the feature of RAM for a device means
the total RAM usage of the device aggregating the operating system and all the applications that run concurrently.
Last but not least, in some cases the characterization of the features as application or infrastructure related is in
the eye of the beholder based on the functionalities of the Edge computing components.

4.1 DATA FEATURES RELATED TO APPLICATIONS

Applications may run on devices or offload their tasks to edge nodes and cloud infrastructures following a partial
or full offloading policy. In both cases the applications have a set of features that characterize them as a function
of the allocated resources and the workload. In the application characterization, we should take into consideration
the workload fluctuation, the heterogeneity in edge devices and the dynamic behavior of the edge network. In this
section we cover the data features related to applications.

• Response time/latency

Total time that is taken to respond to a specific application request

• Availability of Application

It is described as probability i.e., the system is functioning properly after it is requested for use

• Memory usage

The percentage of RAM memory used by the application compared to the total RAM available on the node

• CPU usage

Percentage of the time used by the main processor of the node in operations needed by the application.
This feature is differentiated based on multiprocessing nodes and multithreading applications

• Number of Disk I/O

Number of application operations that require reading or writing to disk files on the host device. This
feature is differentiated based on the granularity of data blocks in different storage media.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 18 of 46

• DB transactions

Number of application requests made to a database management system. They can be measured either in
absolute numbers or as a rate i.e. per second or per minute

• Time duration of Read/Write/Update data transactions

Percentage of time that the application spends on different types of data transactions

• Transfer time for data transactions

The total time needed for all the data transactions of the application to be completed

• Size of Transferred File

Specific file sizes expressed in bytes get transferred by an application through the edge network

• Time-Critical or Mission-Critical Application

The feature of a software program regarding the requirement to respond within a specific timeframe. If the
response is in a batch way it is called time critical application. If the responses are provided continuously
in a streaming way it is called mission critical application.

• Location of data (Cloud/Edge/Cloudlet)

Defines the availability of data shards in different locations of the infrastructure.

• Adaptability

The ability of all processes to automatically be executed according to different conditions

• Throughput

The number of tasks whose implementation has been completed successfully per time interval

• Reliability

The ability for an application to provide accurate or acceptable results in a certain time period

• Usability

The degree for a user to make use of an application and accomplish his goals with efficiency, effectiveness,
and satisfaction

• Other Application KPI

Other application KPI such as: session length, session interval, number of crashes, number of active users,
daily active users, user growth rate, user acquisition, user experience/happiness, average revenue per user

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 19 of 46

4.2 DATA FEATURES RELATED TO INFRASTRUCTURES

• Availability of Resources

This refers to the hardware resources (CPU, RAM, Bandwidth, Storage etc) that we have available at any
given time

• Type of IoT Devices (i.e., Sensor, Actuator, Computing Units, Gateway)

An IoT Device is a piece of hardware mostly with a sensor that transmits data from one place to another
over the Internet. Types of IoT devices may include wireless sensors, actuators, and processing nodes

• Type of IoT Device Position (Static or Dynamic)

This refers to whether an IoT Device remains at a fixed geolocation, or it can move (either while staying in
the same edge network or not)

• Mobility of devices/users in terms of PoIs or (Lat Lon)

The geolocation (Latitude/Longitude) or the semantic aspects of a Point of Interests of device

• IoT Device range of connectivity

The maximum distance coverage that ensures a stable connection between the IoT Device and the edge
network

• Energy Consumption

The amount of energy (in battery percentage or Watt-hours) that the devices use

• The area in which IoT Devices roam or placed

The bounds and the properties of the area of interest that cover the infrastructure

• Cloud to Edge Data Transfer Vs Edge to Edge Data Transfer, or Edge to Cloudlet Data Transfer

If we need to prioritize a means of data transfer vs another.

• Computation and Communication Constraints

All constraints placed by the device’s computational capabilities (CPU clock speed, RAM size etc) and the
characteristics that define the network and the communication limits

• Protocols That Will Be Used Such as Network Protocols, Wireless Protocols

A set of standard protocols to be used by the device in correlation with its communication to the edge
network

• Incoming Requests

Any requests to be handled by the device, made by outside sources (edge network)

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 20 of 46

• Network Data Transfer Speed

How fast data is transmitted through the edge network

• Transmitting data frequency

How often do we need to transmit data over the edge network

• Interference Between Applications That Coexist in the Same IoT Device

Some applications might interfere with each other, e.g. by asking for access to sensors or using up resources
at the same time

• Objectives: Performance, Cost: Energy Consumption, Network Delay, Packet Dropouts

If we have specific objectives to maximize or minimize

• Peculiarities in the Network Structure (Some Nodes Must Be Always Close)

Specific needs for some use cases regarding network topology

• Constraints in Performance

Maximum values of device CPU, memory, etc.

• Changes in the Topology of Network Devices

This refers to changes in the structure of the edge network and the way the devices inside the network are
connected to each other

• Time of Deployment (Software or Hardware)

Time needed to setup the environment (Host, Virtual Machine, Application Container) to be ready for use

• Time of Recoverability

Time needed for the recovery of the system after a fault occurs

• Any Type of Additional Infrastructure QoS/QoE Metrics

Ways of measuring Quality of Service or experience (eg time to setup/migrate into a new datacenter)

• Other Infrastructure QoS metrics

Specific infrastructure metrics that focus on technical network characteristics, such as jittering

• Fault-tolerance Overhead

Determines the total overhead involved while running a fault-tolerance mechanism

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 21 of 46

4.3 GENERAL DATA FEATURES

• Open data

Open data is a useful source of information that we can leverage for reasoning and predictive mechanisms.
In Edge computing literature, open data such as the weather, temperature and popularity of PoIs [2] have
been used for workload modeling.

• Cost

The description of the system monetarily

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 22 of 46

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 23 of 46

5 FEATURE SELECTION

Feature selection is the process of selecting a subset of the available features based on their relevancy to
constructing a machine learning or statistical model. The most important reasons for using feature selection
techniques include shorter training times, model simplification, and greater generalization. Feature selection
techniques are often used in domains where there are many features and comparatively few samples. The following
methods help us determine variable correlation in any kind of input and variable type i.e., numerical or categorical.

Pearson’s

The Pearson correlation coefficient [3] measures linear correlation between two variables X and Y. The result can
indicate positive linear correlation (values close to 1), negative linear correlation (values close to -1 and no linear
correlation (values close to 0). The formula used for a population of two variables X and Y is dividing the covariance
of X and Y by the standard deviation of these variables multiplied. This method of feature selection applies to
problems with numerical inputs and outputs, such as most regression problems.

Spearman’s

The Spearman correlation [4] between two variables is equal to the Pearson correlation between the rank values
of those two variables. Pearson’s correlation only estimates linear relationships, and Spearman’s correlation
estimates monotonic relationships, regardless of them being linear or non-linear. It is also applicable to numerical
input-numerical output problems.

ANOVA

Analysis of variance (ANOVA) [5] is a collection of statistical models and their associated estimation procedures
(such as the "variation" among and between groups) used to analyze the differences among group means in a
sample. It can determine whether the means of three or more groups are different. ANOVA uses F-tests to
statistically test the equality of means. The formula to compute the F-statistic in ANOVA is

F=variation between sample means / variation within the samples

An F-statistic is a ratio of two quantities that are expected to be roughly equal under the null hypothesis, which
produces a result of approximately 1. The ANOVA correlation coefficient can be used in Numerical Input/Categorical
Output problems, as well as in Categorical Input/Numerical Output problems, but in reverse.

Kendall’s

The Kendall rank coefficient [6] is often used to establish whether two variables may be regarded as statistically
dependent. It can be used on the same types of problems as the ANOVA correlation coefficient. Kendall rank
correlation coefficient computes the difference between the number of concordant and discordant pairs of two
variables and divides that by the binomial coefficient.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 24 of 46

The result of the Kendall rank coefficient will be in the range of (-1,1), with negative numbers representing a
negative dependency, positive numbers representing a dependency, and values that approximate to zero
suggesting that the two variables are independent.

Chi-squared

A chi-squared test [7] is a statistical hypothesis test valid to perform when the test statistic is chi-squared distributed
under the null hypothesis. Pearson's chi-squared test is used to determine whether there is a statistically significant
difference between the expected frequencies and the observed frequencies in one or more categories of a
contingency table.

To apply a chi-squared test, we first classify all observations into mutually exclusive classes. Supposing that there
are no differences between the classes in the population, the test statistic computed from the observation should
follow a “chi-squared” frequency distribution. Then the test will evaluate how likely the observed frequencies would
be, if our initial assumption is true.

Mutual Information

The mutual information [8] of two random variables is a measure of mutual dependence between the two variables.
It quantifies the amount of information obtained about one random variable through observing the other random
variable. Mutual information, as well as Chi-squared test applies to problems with categorical inputs and outputs.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 25 of 46

6 MONITORING TOOLS AND SCRIPTS

Edge computing orchestration and decision-making components should have a monitoring system to provide timely
and accurate information about the performance of infrastructure, the application behavior and the user behavior.
Mostly the monitoring systems include a workload monitoring tool with an application logging mechanism or
network sniffers [9] and a resource monitoring tool like Prometheus. In ACCORDION project special emphasis has
been given to the resource usage monitoring as a rich source of information that mirrors the status of the whole
computing system. Monitoring tools can be available as software tools, ready for use after installation and
configuration or manually developed as described in the following subsections.

6.1 PROMETHEUS MONITORING TOOL

In order to gather data, we can use Prometheus a popular open-source monitoring tool which uses a pull model to
store metrics in a time series database. The metrics are stored in key value pair format. Prometheus by its own does
have a big set of metrics, that’s why it uses various exporters to fetch statistics from non-Prometheus systems and
convert them into Prometheus metrics. There are various exporters which give different monitoring information,
for example:

• node-exporter bare metal metrics for hardware and OS, it needs to be configured in every device that needs
to be monitored.

• In case of Kubernetes kube-state-metrics exposes critical metrics about the condition of a Kubernetes
cluster, it generates them from the Kubernetes API. It focuses on the health of nodes, pods and
deployments. The only requirement for this exporter is to have access to Kubernetes API.

• For Docker container monitoring, cadvisor provides metrics for resource usage and characteristics of the
running containers. It needs to be configured in every node that hosts containers.

Prometheus to pull metrics from exporters must configure them as targets with static configuration in case of bare
metal or with service discovery in case of Docker Swarm or Kubernetes. In each exporter the metrics can be found
in the /metrics endpoint, it is an approach that Prometheus also follows. The metrics that are under /metrics
endpoint of Prometheus configured on a K3s (Kubernetes Lightweight) cluster are shown in the below table.To
query the time series database Prometheus has its own query language named PromQL, the results can be shown
as a graph or as tabular data in Prometheus UI. The data types of PromQL are:

• Instant Vector - a set of time series containing a single sample for each time series, all sharing the same
timestamp

• Range Vector - a set of time series containing a range of data points over time for each time series
• Scalar - a simple numeric floating-point value
• String - a simple string value; currently unused

Depending on how the result is shown on as a graph or tabular data some data may not be valid, for example, an
expression that returns an instant vector is the only type that can be directly graphed. PromQL also has basic logic,
comparing, arithmetic and aggregation operators. For example, to calculate the CPU usage percentage of a by
subtracting the idle usage from 100% the query would be:

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 26 of 46

100 - (avg by (instance) (irate(node_cpu_seconds_total{job="node",mode="idle"}[5m])) * 100)

The irate is a counter to calculate the per-second values, job indicates that node_cpu_seconds_total is a metric
from node-exporter, mode returns only the idle cpu metric values and avg aggregates the metric by device with the
help of instance and calculates the five minutes average.

Apart from Prometheus UI queries can also performed on the API /api/v1/query on a Prometheus server by adding
them as URL parameters. In case of the Prometheus APΙ the response is in JSON format. For successful APΙ requests
the returned status code is 2xx, invalid requests return a JSON error object and one of the following HTTP response
codes:

• 400 Bad Request when parameters are missing or incorrect.
• 422 Unprocessable Entity when an expression can't be executed (RFC4918).
• 503 Service Unavailable when queries time out or abort.

In the appendix in table 5 are provided all the available data features that can monitor the Prometheus monitoring
tool.

6.2 MANUAL MONITORING RESOURCES

Manual monitoring tools can be deployed and run to edge nodes. Specifically, we have developed a python script
that combines the psutil [10] and GPUtil [11] libraries and enable us to register metrics about the CPU, RAM,
network, HDD and GPU in real time, while the target processes are running. Due to its python nature, it is very
lightweight, compatible with edge limitations.

The script allows us to define a set of parameters during each runtime and fine-tuning the monitoring process.
These parameters include the snapshot frequency of the metrics watched, the file size limit of the logs in order to
more easily process the files, and three lists of excluded devices if we have any, one for each category of devices
(HDD, GPU and Network). Table 1 shows an overview of the metrics we are monitoring, we are presenting for each
function its name, its return type, its category and a short description:

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 27 of 46

Table 1 Metrics of Interest of manual monitoring tool

All the data extracted by the monitoring tool are separated by category and converted in JSON format for uniformity
and easier usage during the next steps of the modeling process. A JSON schema example is available in table 2.

Table 2. JSON of Profiling Features

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 28 of 46

6.3 MANUAL MONITORING GEOLOCATION

In edge computing, the geolocation of a device in the network is often useful information, especially in cases where
the various devices are not in some fixed place, but can move around (such as cellphones, laptops etc). Monitoring
the geolocation of such devices may allow us to provide better support against QoS deterioration, or even offer
special features, depending on the case.

In that regard, one option is to use IP address location tracking (via some Python packages such as GeoCoder[12]
which can easily acquire the approximate geolocation of any device that is connected to the network. The drawback
of this option is that the accuracy of the results will not be good enough to determine the exact position, but rather
an approximation that could help determine a wider area the device is located in.

Devices that have a GPS sensor installed, can be tracked by using the information the sensor provides, with the use
of an API such as Plyer [13], depending on the platform and the device’s operating system. Geolocation information
acquired via GPS will give much more accurate results and will allow us to monitor the user’s movements in greater
detail, in order to ensure better Quality of Experience, assisting towards goals such as better connectivity.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 29 of 46

7 ASSOCIATION OF COMPONENTS WITH DATA FEATURES AND THEIR
CHARACTERISTICS

7.1 RESOURCE INDEXING & DISCOVERY

The aim of “Resource Indexing and Discovery” (RID) component is to keep an up-to-date view on the status of
computational resources among the various miniclouds. The data is read from the monitoring functionalities and
uses the same data model that is described in the next sections. The data is distributed among the available
miniclouds in a way to optimize the efficiency of the retrieval and, at the same time, minimize the disruption if a
minicloud becomes unavailable.

In fact, the RID component does not produce new data. Also, the RID service is mostly agnostic about the nature of
the data, but its implementation can be configured according to the frequency of its updates. The RID component
also provides a service that allows us to extract information about the required resources by running queries on
stored data. Such queries can in principle come from any ACCORDION component that wants to find resources with
specific computational features or characteristics.

7.2 EDGE STORAGE

The edge storage component is responsible for the management of storage nodes and data storage and transfer
on the edge mini-clouds. In order to create optimized policies for these data storage and retrieval tasks the
component needs some data related to the resource usage, functionality and infrastructure wellbeing of the
storage nodes and the applications that request the data. The component will use these data in order to plan and
enact policies concerning the hardware and software architecture, the data storage locations, the data cache and
the data access rights.

In order to plan the policies and architectures and create models for real time and predictive corrections and
optimizations to these policies we need at least the data described in table 3:

 Type Variable Continuous Monitoring Monitoring System

Node_ID Nominal String ✅ Prometheus

Node_I/O Interval Float ✅ Prometheus

Node_RAM Interval Float ✅ Prometheus

Node_CPU Interval Float ✅ Prometheus

Node_Network Interval Float ✅ Prometheus

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 30 of 46

Node_Alive Interval Boolean ✅ Prometheus

Node_HDD Interval Float ✅ Prometheus

Table 3. Edge Storage Data Requirements

7.3 INTELLIGENT, ADAPTIVE RESOURCE ORCHESTRATION

The Intelligent adaptive resource orchestrator will leverage a resource model and an application model. The
resource model will be modeled as a graph and the application model will follow a systematic structure with
constraints. In addition, it will take input from data sources of channels and buses that provide information relevant
to for static and dynamic features of the two. Until the link of the Intelligent adaptive resource orchestrator with
the monitoring section public datasets will be used to estimate the needs of the experimental phase. The data
output will be related to orchestrator distributed implementation and they will follow a detailed
deployment/reaction plan for each application submitted.

7.4 AI-BASED NETWORK ORCHESTRATION

The aim of this task, task 4.2, is to design and develop a multi-domain AI-based orchestration framework of the
network elements by ensuring reliability and latency. This component provides an automated orchestration and
intelligent management operations and facilitates the life cycle management of the network slices with the aim of
a rapid slice creation and activation, enabling application developers, UC owners (In the case of ACCORDION:
ORAMA VR, ORBK and PLEXUS) to define blueprints for their VR/AR ready slices. This component relies on
monitoring the compute and network resources at the edge for any potential QoS degradation (e.g., congested
links, node capacity excess, etc.) and accordingly predicting the network and computing requirements in real-time
that fix these issues and guarantee the application requirements.

This task investigates machine learning techniques and their integration, in order to allow self-configuration and
self-optimization capabilities of compute and network resources at the edge. This includes the study of
decentralized VR/AR applications, and collect and process various types of data, preparing the ground for intelligent
slice deployment. For the training phase, we will rely on our own datasets, collected by deploying either VR/AR
applications or use UCs’ applications in our testbed. The full spectrum of collected data will be provided in the WP4
and at this stage of the project, we cannot provide these datasets in detail.

7.5 RESILIENCE POLICIES & MECHANISMS

The Resilience policies & mechanisms (RPM) component provides a proactive fault tolerance model using data
features related with the resource usage and the mobility. The Mobile aware FT mechanism uses a next position

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 31 of 46

predictor that estimates the geo-location (lat, lon) of a mobile entity in an area of interest in the next time frames.
If the mobile entity will be out of the coverage of the Edge infrastructure or there will be a high distribution of
mobile entities around a specific Point of interest, then the FT mechanism will predict potential QoS deterioration
and trigger proactive measures. The proactive measure will be an intelligent replication (hot/cold migration) that
meets the geographical needs of the Edge environment.

The Resource utilization aware FT mechanism will monitor the resources usage that runs on each hybrid edge
minicloud in order to reveal at run-time, potential QoS degradation. In case that the deployed resources cannot
satisfy the increasing amount of resources usage on the next predicted time steps, then the middleware will trigger
mitigation policies such as hot- and cold-migration between neighboring hybrid edge miniclouds and processing
edge nodes.

For these two mechanisms there is a need for training and evaluating dataset that can be provided to one or more
CSV files (or any equivalent data file). The dataset should contain the features described in the table 4 and the time
Interval can be 60 sec.

 Type Variable Continuous Monitoring Monitoring System

Device_ID Nominal String ✅ Manual Script

Device_Type Nominal String ✅ Manual Script

Device_Latitude Interval Float ✅ Manual Script

Device_Longitude Interval Float ✅ Manual Script

Timestamp Ordinal Float ✅ Manual Script

POI_ID Nominal String File

POI_Semantic
Aspects

Composite of
Nominals

 File

POI_Latitude Interval Float File

POI_Longitude Interval Float File

Edge_ID_CPU_usage Ratio Float ✅ Prometheus

Edge_ID_RAM_usage Ratio Float ✅ Prometheus

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 32 of 46

Edge_BW Ratio Float ✅ Prometheus

Edge_ID_I/O Ratio Float ✅ Prometheus

Table 4. Fault Tolerance Data Requirements

7.6 PRIVACY PRESERVING MECHANISMS

The privacy-preserving component (PPC) is responsible for guaranteeing users' privacy at various levels within the
Accordion infrastructure. This component will carry out (at least) three functions. First, PPC will provide the
necessary mechanisms to ensure that containers can be correctly executed atop a network infrastructure without
the network administrators being able to infer any information about them (e.g., which type of application runs
inside them). Second, PPC will enable the generation of machine learning (ML) models that provide high accuracy
while at the same time being resistant to attacks that aim to infer private information from the ML model. PPC will
also contain privacy-preserving mechanisms suitable for federated learning. Finally, PPC will allow the detection of
user data leakage to unauthorised third parties by passively or actively monitoring users on devices and user
components (e.g., browsers, containers, etc.).

 In order to develop the above-mentioned mechanisms, we require to collect, analyse and process various types of
data. In all cases, we will rely on our own datasets. For the privacy-preserving execution of containers, we envision
a scenario where containers run in a confidential and isolated manner protected by a trusted execution
environment (TEE). However, this approach does not protect the interactions between the container and the host
kernel, which, based on our hypothesis, could become a unique fingerprint for containers. To test our hypothesis
and eliminate the fingerprint (if it exists), we will crawl the Docker hub website in order to obtain the names of
many popular container images, then run each of the container images separately in order to collect and analyse
their syscalls patterns. Similarly, to detect user data leakage, we will collect the data exchanged between different
entities and analyse the obtained information at distinct levels (e.g., in the application or network layer). This
includes plaintext and encrypted data collected while users browse the Web or when containers communicate with
each other (among others). Finally, we envisage the design and implementation of generic techniques -- that can
be combined with other technologies such as TEEs -- to produce privacy-preserving ML models that provide high
accuracy without incurring a high overhead. The proposed techniques can then be adjusted to fit the needs of a
specific ML task within the Accordion infrastructure.

7.7 DYNAMIC QOE ASSESSMENT

For quality assessment task, the data will be collected once during the development of model through subjective
experiment, and once the model is developed and employed in the accordion framework. For the training phase,
subjective data will be collected according to the ethic policy at the host institute. The data that is collected is
subjective ratings in scale of 1 to 7 which is the judgement of users about the quality features of service or
application that the ser experienced. In addition, some demographic information will be collected prior to the
experiment such as age, gender, and level of experience to the test service or application. It has to be noted that
the consent form to collect the data for research purposes will be given to the participant before the start of the

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 33 of 46

test. It has to be noted that no personal information that can link the participants to their collected data will be
gathered, e.g., name or phone number.

For testing the model in the accordion framework, depends on the application, network parameters, encoding
parameters, and client information might be collected. The full spectrum of collected data will be provided in the
WP6 report and at this stage of the project cannot be determined in detail.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 34 of 46

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 35 of 46

8 CONCLUSIONS

In the report of the data requirements analysis and collection, we discussed the importance of quality data for
timely and effective decision making and orchestration in Edge computing infrastructures. Deep learning and
Artificial Intelligence mechanisms are data driven models that provide accurate results based on the quality of their
training data. So, we described the steps that we should follow in order to construct the appropriate datasets for
each component, how to filter the important data features and discard the features that are not related to the
target of the models.

In the context of Edge computing systems, we presented the monitoring tools which we can use in the ACCORDION
project and specifically the Prometheus monitoring tool. The monitoring tools are the valuable sources that we can
use to record the features of interest. In the last section we presented the ACCORDION components that have data
requirements and the description of the data they need.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 36 of 46

REFERENCES

[1] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Pearson, 2006.

[2] J. Violos, S. Pelekis, A. Berdelis, S. Tsanakas, K. Tserpes, and T. Varvarigou, “Predicting Visitor Distribution for
Large Events in Smart Cities,” in 2019 IEEE International Conference on Big Data and Smart Computing (BigComp),
Feb. 2019, pp. 1–8, doi: 10.1109/BIGCOMP.2019.8679181.

[3] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson Correlation Coefficient,” in Noise Reduction in Speech
Processing, I. Cohen, Y. Huang, J. Chen, and J. Benesty, Eds. Berlin, Heidelberg: Springer, 2009, pp. 1–4.

[4] C. Wissler, “The Spearman Correlation Formula,” Science, vol. 22, no. 558, pp. 309–311, 1905.

[5] L. Stehle and S. Wold, “Analysis of variance (ANOVA),” Chemometrics and Intelligent Laboratory Systems, vol. 6,
no. 4, pp. 259–272, Nov. 1989, doi: 10.1016/0169-7439(89)80095-4.

[6] M. G. Kendall, “Partial Rank Correlation,” Biometrika, vol. 32, no. 3/4, pp. 277–283, 1942, doi: 10.2307/2332130.

[7] P. E. Greenwood and M. S. Nikulin, A Guide to Chi-Squared Testing. John Wiley & Sons, 1996.

[8] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual Information Analysis,” in Cryptographic Hardware and
Embedded Systems – CHES 2008, Berlin, Heidelberg, 2008, pp. 426–442, doi: 10.1007/978-3-540-85053-3_27.

[9] M. C. Calzarossa, L. Massari, and D. Tessera, “Workload Characterization: A Survey Revisited,” ACM Comput.
Surv., vol. 48, no. 3, p. 48:1–48:43, Feb. 2016, doi: 10.1145/2856127.

[10] GitHub, G. Rodola’, giampaolo/psutil, https://github.com/giampaolo/psutil. Last accessed 5 Jun 2020

[11] GitHub, A. K. Mortensen, anderskm/gputil https://github.com/anderskm/gputil. Last accessed 5 Jun 2020

[12] “Geocoder: Simple, Consistent — geocoder 1.38.1 documentation.” https://geocoder.readthedocs.io/
(accessed Dec. 22, 2020).

[13] K. team, plyer: Platform-independent wrapper for platform-dependent APIs. https://pypi.org/project/plyer/
(accessed Dec. 22, 2020).

 DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 37 of 46

APPENDIX A. PROMETHEUS METRICS

METRICS SUMMARY

go_gc_duration_seconds A summary of the pause
duration of garbage collection
cycles.

go_goroutines Number of goroutines that
currently exist.

go_info Information about the Go
environment.

go_memstats_alloc_bytes Number of bytes allocated and
still in use.

go_memstats_alloc_bytes_total Total number of bytes allocated,
even if freed.

go_memstats_buck_hash_sys_bytes Number of bytes used by the
profiling bucket hash table.

go_memstats_frees_total Total number of frees.

go_memstats_gc_cpu_fraction The fraction of this program's
available CPU time used by the
GC since the program started.

go_memstats_gc_sys_bytes Number of bytes used for
garbage collection system
metadata.

go_memstats_heap_alloc_bytes Number of heap bytes allocated
and still in use.

go_memstats_heap_idle_bytes Number of heap bytes waiting to
be used.

go_memstats_heap_inuse_bytes Number of heap bytes that are
in use.

go_memstats_heap_objects Number of allocated objects.

go_memstats_heap_released_bytes Number of heap bytes released
to OS.

go_memstats_heap_sys_bytes Number of heap bytes obtained
from system.

go_memstats_last_gc_time_seconds Number of seconds since 1970
of last garbage collection.

go_memstats_lookups_total Total number of pointer lookups.

go_memstats_mallocs_total Total number of mallocs.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 38 of 46

go_memstats_mcache_inuse_bytes Number of bytes in use by
mcache structures.

go_memstats_mcache_sys_bytes Number of bytes used for
mcache structures obtained
from system.

go_memstats_mspan_inuse_bytes Number of bytes in use by
mspan structures.

go_memstats_mspan_sys_bytes Number of bytes used for
mspan structures obtained from
system.

go_memstats_next_gc_bytes Number of heap bytes when
next garbage collection will take
place.

go_memstats_other_sys_bytes Number of bytes used for other
system allocations.

go_memstats_stack_inuse_bytes Number of bytes in use by the
stack allocator.

go_memstats_stack_sys_bytes Number of bytes obtained from
system for stack allocator.

go_memstats_sys_bytes Number of bytes obtained from
system.

go_threads Number of OS threads created.

net_conntrack_dialer_conn_attempted_total Total number of connections
attempted by the given dialer a
given name.

net_conntrack_dialer_conn_closed_total Total number of connections
closed which originated from the
dialer of a given name.

net_conntrack_dialer_conn_established_total Total number of connections
successfully established by the
given dialer a given name.

net_conntrack_dialer_conn_failed_total Total number of connections
failed to dial by the dialer a
given name.

net_conntrack_listener_conn_accepted_total Total number of connections
opened to the listener of a given
name.

net_conntrack_listener_conn_closed_total Total number of connections
closed that were made to the
listener of a given name.

process_cpu_seconds_total Total user and system CPU time
spent in seconds.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 39 of 46

process_max_fds Maximum number of open file
descriptors.

process_open_fds Number of open file descriptors.

process_resident_memory_bytes Resident memory size in bytes.

process_start_time_seconds Start time of the process since
unix epoch in seconds.

process_virtual_memory_bytes Virtual memory size in bytes.

process_virtual_memory_max_bytes Maximum amount of virtual
memory available in bytes.

prometheus_api_remote_read_queries The current number of remote
read queries being executed or
waiting.

prometheus_build_info A metric with a constant '1'
value labeled by version,
revision, branch, and goversion
from which prometheus was
built.

prometheus_config_last_reload_success_timestamp_seconds Timestamp of the last
successful configuration reload.

prometheus_config_last_reload_successful Whether the last configuration
reload attempt was successful.

prometheus_engine_queries The current number of queries
being executed or waiting.

prometheus_engine_queries_concurrent_max The max number of concurrent
queries.

prometheus_engine_query_duration_seconds Query timings

prometheus_engine_query_log_enabled State of the query log.

prometheus_engine_query_log_failures_total The number of query log
failures.

prometheus_http_request_duration_seconds Histogram of latencies for HTTP
requests.

prometheus_http_requests_total Counter of HTTP requests.

prometheus_http_response_size_bytes Histogram of response size for
HTTP requests.

prometheus_notifications_alertmanagers_discovered The number of alertmanagers
discovered and active.

prometheus_notifications_dropped_total Total number of alerts dropped
due to errors when sending to
Alertmanager.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 40 of 46

prometheus_notifications_errors_total Total number of errors sending
alert notifications.

prometheus_notifications_latency_seconds Latency quantiles for sending
alert notifications.

prometheus_notifications_queue_capacity The capacity of the alert
notifications queue.

prometheus_notifications_queue_length The number of alert notifications
in the queue.

prometheus_notifications_sent_total Total number of alerts sent.

prometheus_remote_storage_highest_timestamp_in_seconds Highest timestamp that has
come into the remote storage
via the Appender interface, in
seconds since epoch.

prometheus_remote_storage_samples_in_total Samples in to remote storage,
compare to samples out for
queue managers.

prometheus_remote_storage_string_interner_zero_reference_releases_total The number of times release
has been called for strings that
are not interned.

prometheus_rule_evaluation_duration_seconds The duration for a rule to
execute.

prometheus_rule_evaluation_failures_total The total number of rule
evaluation failures.

prometheus_rule_evaluations_total The total number of rule
evaluations.

prometheus_rule_group_duration_seconds The duration of rule group
evaluations.

prometheus_rule_group_interval_seconds The interval of a rule group.

prometheus_rule_group_iterations_missed_total The total number of rule group
evaluations missed due to slow
rule group evaluation.

prometheus_rule_group_iterations_total The total number of scheduled
rule group evaluations, whether
executed or missed.

prometheus_rule_group_last_duration_seconds The duration of the last rule
group evaluation.

prometheus_rule_group_last_evaluation_timestamp_seconds The timestamp of the last rule
group evaluation in seconds.

prometheus_rule_group_rules The number of rules.

prometheus_sd_consul_rpc_duration_seconds The duration of a Consul RPC
call in seconds.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 41 of 46

prometheus_sd_consul_rpc_failures_total The number of Consul RPC call
failures.

prometheus_sd_discovered_targets Current number of discovered
targets.

prometheus_sd_dns_lookup_failures_total The number of DNS-SD lookup
failures.

prometheus_sd_dns_lookups_total The number of DNS-SD
lookups.

prometheus_sd_failed_configs Current number of service
discovery configurations that
failed to load.

prometheus_sd_file_read_errors_total The number of File-SD read
errors.

prometheus_sd_file_scan_duration_seconds The duration of the File-SD scan
in seconds.

prometheus_sd_kubernetes_events_total The number of Kubernetes
events handled.

prometheus_sd_kubernetes_http_request_duration_seconds Summary of latencies for HTTP
requests to the Kubernetes API
by endpoint.

prometheus_sd_kubernetes_http_request_total Total number of HTTP requests
to the Kubernetes API by status
code.

prometheus_sd_kubernetes_workqueue_depth Current depth of the work
queue.

prometheus_sd_kubernetes_workqueue_items_total Total number of items added to
the work queue.

prometheus_sd_kubernetes_workqueue_latency_seconds How long an item stays in the
work queue.

prometheus_sd_kubernetes_workqueue_longest_running_processor_seconds Duration of the longest running
processor in the work queue.

prometheus_sd_kubernetes_workqueue_unfinished_work_seconds How long an item has remained
unfinished in the work queue.

prometheus_sd_kubernetes_workqueue_work_duration_seconds How long processing an item
from the work queue takes.

prometheus_sd_received_updates_total Total number of update events
received from the SD providers.

prometheus_sd_updates_delayed_total Total number of update events
that couldn't be sent
immediately.

prometheus_sd_updates_total Total number of update events
sent to the SD consumers.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 42 of 46

prometheus_target_interval_length_seconds Actual intervals between
scrapes.

prometheus_target_metadata_cache_bytes The number of bytes that are
currently used for storing metric
metadata in the cache

prometheus_target_metadata_cache_entries Total number of metric
metadata entries in the cache

prometheus_target_scrape_pool_reloads_failed_total Total number of failed scrape
loop reloads.

prometheus_target_scrape_pool_reloads_total Total number of scrape loop
reloads.

prometheus_target_scrape_pool_sync_total Total number of syncs that were
executed on a scrape pool.

prometheus_target_scrape_pools_failed_total Total number of scrape pool
creations that failed.

prometheus_target_scrape_pools_total Total number of scrape pool
creation attempts.

prometheus_target_scrapes_cache_flush_forced_total How many times a scrape
cache was flushed due to
getting big while scrapes are
failing.

prometheus_target_scrapes_exceeded_sample_limit_total Total number of scrapes that hit
the sample limit and were
rejected.

prometheus_target_scrapes_sample_duplicate_timestamp_total Total number of samples
rejected due to duplicate
timestamps but different values

prometheus_target_scrapes_sample_out_of_bounds_total Total number of samples
rejected due to timestamp
falling outside of the time
bounds

prometheus_target_scrapes_sample_out_of_order_total Total number of samples
rejected due to not being out of
the expected order

prometheus_target_sync_length_seconds Actual interval to sync the
scrape pool.

prometheus_template_text_expansion_failures_total The total number of template
text expansion failures.

prometheus_template_text_expansions_total The total number of template
text expansions.

prometheus_treecache_watcher_goroutines The current number of watcher
goroutines.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 43 of 46

prometheus_treecache_zookeeper_failures_total The total number of ZooKeeper
failures.

prometheus_tsdb_blocks_loaded Number of currently loaded data
blocks

prometheus_tsdb_checkpoint_creations_failed_total Total number of checkpoint
creations that failed.

prometheus_tsdb_checkpoint_creations_total Total number of checkpoint
creations attempted.

prometheus_tsdb_checkpoint_deletions_failed_total Total number of checkpoint
deletions that failed.

prometheus_tsdb_checkpoint_deletions_total Total number of checkpoint
deletions attempted.

prometheus_tsdb_compaction_chunk_range_seconds Final time range of chunks on
their first compaction

prometheus_tsdb_compaction_chunk_samples Final number of samples on
their first compaction

prometheus_tsdb_compaction_chunk_size_bytes Final size of chunks on their first
compaction

prometheus_tsdb_compaction_duration_seconds Duration of compaction runs

prometheus_tsdb_compaction_populating_block Set to 1 when a block is
currently being written to the
disk.

prometheus_tsdb_compactions_failed_total Total number of compactions
that failed for the partition.

prometheus_tsdb_compactions_skipped_total Total number of skipped
compactions due to disabled
auto compaction.

prometheus_tsdb_compactions_total Total number of compactions
that were executed for the
partition.

prometheus_tsdb_compactions_triggered_total Total number of triggered
compactions for the partition.

prometheus_tsdb_head_active_appenders Number of currently active
appender transactions

prometheus_tsdb_head_chunks Total number of chunks in the
head block.

prometheus_tsdb_head_chunks_created_total Total number of chunks created
in the head

prometheus_tsdb_head_chunks_removed_total Total number of chunks
removed in the head

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 44 of 46

prometheus_tsdb_head_gc_duration_seconds Runtime of garbage collection in
the head block.

prometheus_tsdb_head_max_time Maximum timestamp of the
head block. The unit is decided
by the library consumer.

prometheus_tsdb_head_max_time_seconds Maximum timestamp of the
head block.

prometheus_tsdb_head_min_time Minimum time bound of the
head block. The unit is decided
by the library consumer.

prometheus_tsdb_head_min_time_seconds Minimum time bound of the
head block.

prometheus_tsdb_head_samples_appended_total Total number of appended
samples.

prometheus_tsdb_head_series Total number of series in the
head block.

prometheus_tsdb_head_series_created_total Total number of series created
in the head

prometheus_tsdb_head_series_not_found_total Total number of requests for
series that were not found.

prometheus_tsdb_head_series_removed_total Total number of series removed
in the head

prometheus_tsdb_head_truncations_failed_total Total number of head
truncations that failed.

prometheus_tsdb_head_truncations_total Total number of head
truncations attempted.

prometheus_tsdb_isolation_high_watermark The highest TSDB append ID
that has been given out.

prometheus_tsdb_isolation_low_watermark The lowest TSDB append ID
that is still referenced.

prometheus_tsdb_lowest_timestamp Lowest timestamp value stored
in the database. The unit is
decided by the library
consumer.

prometheus_tsdb_lowest_timestamp_seconds Lowest timestamp value stored
in the database.

prometheus_tsdb_mmap_chunk_corruptions_total Total number of memory-
mapped chunk corruptions.

prometheus_tsdb_out_of_bound_samples_total Total number of out of bound
samples ingestion failed
attempts.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 45 of 46

prometheus_tsdb_out_of_order_samples_total Total number of out of order
samples ingestion failed
attempts.

prometheus_tsdb_reloads_failures_total Number of times the database
failed to reload block data from
disk.

prometheus_tsdb_reloads_total Number of times the database
reloaded block data from disk.

prometheus_tsdb_retention_limit_bytes Max number of bytes to be
retained in the tsdb blocks,
configured 0 means disabled

prometheus_tsdb_size_retentions_total The number of times that blocks
were deleted because the
maximum number of bytes was
exceeded.

prometheus_tsdb_storage_blocks_bytes The number of bytes that are
currently used for local storage
by all blocks.

prometheus_tsdb_symbol_table_size_bytes Size of symbol table on disk (in
bytes)

prometheus_tsdb_time_retentions_total The number of times that blocks
were deleted because the
maximum time limit was
exceeded.

prometheus_tsdb_tombstone_cleanup_seconds The time taken to recompact
blocks to remove tombstones.

prometheus_tsdb_vertical_compactions_total Total number of compactions
done on overlapping blocks.

prometheus_tsdb_wal_completed_pages_total Total number of completed
pages.

prometheus_tsdb_wal_corruptions_total Total number of WAL
corruptions.

prometheus_tsdb_wal_fsync_duration_seconds Duration of WAL fsync.

prometheus_tsdb_wal_page_flushes_total Total number of page flushes.

prometheus_tsdb_wal_segment_current WAL segment index that TSDB
is currently writing to.

prometheus_tsdb_wal_truncate_duration_seconds Duration of WAL truncation.

prometheus_tsdb_wal_truncations_failed_total Total number of WAL
truncations that failed.

prometheus_tsdb_wal_truncations_total Total number of WAL
truncations attempted.

DRAFT

ACCORDION – G.A. 871793

D2.4 Data requirements analysis and collection Page 46 of 46

prometheus_tsdb_wal_writes_failed_total Total number of WAL writes that
failed.

prometheus_web_federation_errors_total Total number of errors that
occurred while sending
federation responses.

prometheus_web_federation_warnings_total Total number of warnings that
occurred while sending
federation responses.

promhttp_metric_handler_requests_in_flight Current number of scrapes
being served.

promhttp_metric_handler_requests_total Total number of scrapes by
HTTP status code.

Table 5. Prometheus Metrics

DRAFT

