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EXECUTIVE SUMMARY 
The present document is the result of data requirements analysis and collection. It defines the quality 
characteristics that good datasets should satisfy and the monitoring sources of data features. This document 
summarizes all the preparatory work for data collecting that will be used by WP3 Edge infrastructure pool 
framework, WP4 Edge/Cloud continuum management framework and WP5 Application management framework 
for experimentation and evaluation.  

In section 3, we describe the workflow of dataset construction including data filtering, aggregating and 
representation. Next, in section 4 we summarize the various data features that have been proposed and used in 
the literature of Edge and Fog computing in order to put intelligence or enhance the functionality of services like 
fault tolerance, elasticity, workload balancing, VM migration and task offloading mechanisms.  In section 5 we 
introduce feature selection metrics widely used in the data science field in order evaluate the relation of a candidate 
data feature with the target value. These feature selection metrics can help us to define the set of features that 
should be monitored and used by each component. 

Section 6 describes the software tools that the ACCORDION components and services require from the 
infrastructure and application layers in order to collect the data. The main monitoring tool will be Prometheus 
which uses a pull model to store metrics in a time series database. An additional manual monitoring tool has been 
developed in python language in order to monitor resource usage in Raspberry pies. 

In task 2.4 we had many discussions and intercommunication between partners in order to conclude which tasks 
of the ACCORDION WP3, WP4 and WP5 have data requirements. Section 7 provides a description of the data 
features and characteristics for the tasks that have data requirements. In section 8, we conclude the deliverable 
and give the future direction that the consortium will follow in order to have timely qualitative data for 
experimentation and evaluation.  
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DISCLAIMER 
ACCORDION (871793) is a H2020 ICT project funded by the European Commission. 

ACCORDION establishes an opportunistic approach in bringing together edge resource/infrastructures (public 
clouds, on-premise infrastructures, telco resources, even end-devices) in pools defined in terms of latency, that can 
support NextGen application requirements. To mitigate the expectation that these pools will be “sparse”, providing 
low availability guarantees, ACCORDION will intelligently orchestrate the compute & network continuum formed 
between edge and public clouds, using the latter as a capacitor. Deployment decisions will be taken also based on 
privacy, security, cost, time and resource type criteria. 

This document contains information on ACCORDION core activities. Any reference to content in this document 
should clearly indicate the authors, source, organisation and publication date. 

The document has been produced with the funding of the European Commission. The content of this publication is 
the sole responsibility of the ACCORDION Consortium and its experts, and it cannot be considered to reflect the 
views of the European Commission. The authors of this document have taken any available measure in order for its 
content to be accurate, consistent and lawful. However, neither the project consortium as a whole nor the 
individual partners that implicitly or explicitly participated the creation and publication of this document hold any 
sort of responsibility that might occur as a result of using its content. 

The European Union (EU) was established in accordance with the Treaty on the European Union (Maastricht). There 
are currently 27 members states of the European Union. It is based on the European Communities and the member 
states’ cooperation in the fields of Common Foreign and Security Policy and Justice and Home Affairs. The five main 
institutions of the European Union are the European Parliament, the Council of Ministers, the European 
Commission, the Court of Justice, and the Court of Auditors (http://europa.eu.int/). 

 

Copyright © The ACCORDION Consortium 2020. See https://www.accordion-project.eu/ for details on the copyright holders. 

You are permitted to copy and distribute verbatim copies of this document containing this copyright notice, but modifying this 
document is not allowed. You are permitted to copy this document in whole or in part into other documents if you attach the 
following reference to the copied elements: “Copyright © ACCORDION Consortium 2020.” 

The information contained in this document represents the views of the ACCORDION Consortium as of the date they are 
published. The ACCORDION Consortium does not guarantee that any information contained herein is error-free, or up to date. 
THE ACCORDION CONSORTIUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING THIS 
DOCUMENT. DRAFT
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1 RELEVANCE TO ACCORDION 

1.1 PURPOSE OF THIS DOCUMENT 

The present document is the result of the collaborative effort of all ACCORDION partners participating in Task 2.4. 
The objective of this task is to define the data characteristics and the sources of data that require the ACCORDION 
components and services.  

For each component and service that require data we define: the data type for each feature, if it is batch or stream, 
and the update rates. In addition, we discuss what is an appropriate size of data and last but not least we provide 
a set of feature selection metrics in order to filter out non-informative or redundant features. 

The document offers the methodology in order to collect data from various sources, the available software that 
monitor the data sources, how to integrate the data, and the preprocessing steps in terms of cleaning and 
validating.  

 

1.2 RELATION TO OTHER WORKPACKAGES 

The task 2.4 Data requirements analysis and collection makes the necessary preparatory work in order to gather 
the data will be used by the WP3 Edge infrastructure pool framework, the WP4 Edge/Cloud continuum 
management framework and the WP5 Application management framework.  

The WP3, WP4 and WP5 components, tasks, services, models, and any type of analysis that need data in order to 
provide useful results and decisions should define their data requirements.  The data requirements should be 
derived based on the monitoring applications of ACCORDION project, the edge infrastructure and the deployed 
applications. 

 

1.3 STRUCTURE OF THE DOCUMENT 

In section 2, we introduce the importance of data for decision making in edge fog computing and specifically in the 
ACCORDION project. In section 3, we describe the workflow of dataset construction from the perspective of data 
science tailored to the ACCORDION needs. Section 4 provides a long list of data features that have been used in the 
literature of Edge, Fog and Mist computing. These features are mainly divided into features related to applications 
and features related to infrastructures as described in the subsections 4.1 and 4.2 respectively. We also mention in 
subsection 4.3 open data and cost as additional features. In order to evaluate and decide the most important 
features for each task, we provide in Section 5 feature selection techniques based on the variable types. 

Section 6 describes the monitoring tools we can use in order to retrieve data features from infrastructure nodes 
and applications. Subsection 6.1 gives an overview of Prometheus monitoring tool, subsections 6.2 and 6.3 describe 
the use of manual monitoring tools. In section 7, we provide for the WP3, WP4 and WP5 tasks a description of their 
data requirements, specifically Resource indexing and discovery in subsection 71, edge storage in the subsection 
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7.2, intelligent, adaptive resource orchestration in subsection 7.3, resilience policies and mechanisms in subsection 
7.5, privacy preserving mechanisms in subsection 7.6 and dynamic QOE assessment in subsection 7.7. The 
ACCORDION tasks that do not have data requirements are not included in this list. Section 8 concludes the 
deliverable. 
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2 INTRODUCTION 

Data are pieces of information that are used in order to work a service and provide useful functionalities. Before 
the data era, data was just the input and the output of a service while the service could be modeled explicitly by 
the knowledge experts and the developers. In data driven models, data are also used in order to provide the models 
of the services. Data analysis and machine learning algorithms derive from models by training datasets. Afterwards, 
these models are the core of the services. 

Edge and cloud computing require data in order to orchestrate and administrate edge nodes, understand the users’ 
behaviors, profile the applications, capture the fluctuation in the workload and estimate the relations between 
resource usage and deterioration of the Quality of Service (QOS) just to mention a few of the data driven 
functionalities. 

In the ACCORDION project data will not be used only for training models and evaluating their performance. Data 
can be used for many different uses such as monitoring the connected devices, configuration files, state of Virtual 
Machines (VM). In this document, we will summarize the data requirements mainly for the WP3, WP4 and WP5. In 
addition, we will describe all the actions in order to construct quality datasets from raw data and the applications 
for data gathering. 
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3 DATASET CONSTRUCTION PROCESS   

Dataset construction includes all the necessary actions in order to construct a quality dataset for a component, 
task, service and analysis. In the rest of the document, we will use the term service to refer to all types of data uses. 
Different components may share the same dataset or each component may have its own dataset. Generally, 
speaking, we prefer to build datasets that cover the needs of different components, but most of the time different 
components have different data requirements and we should avoid putting irrelevant data features together.  

The dataset construction process tailored to the needs of Edge computing systems begins with the discussions 
between the data science expert with the application owners and the infrastructure administrators. These 
discussions are important to understand what features are need to be monitored for each component. The features 
can be expressed in categorical (Qualitative) or numeric (Quantitative) types [1]. The categorical data types include 
nominal which permit permutation of the values and ordinal which preserve an order in the values. The numeric 
data types include the interval values and the ratio values. In internal values only the differences between values 
are meaningful, while in Ratio values, both differences and ratios are meaningful.  

In the case of training datasets, the amount of data we should gather depends on the complexity of the model and 
the difficulty of the problem. There is no rule of thumb of the amount of data that is enough but some general 
directions can be given. We need at least an order of magnitude more examples than trainable parameters in order 
to avoid the curse of dimensionality. Complex models with high capacity need much more data than simple models. 
If there are available studies in literature for similar tasks and use cases, we can also target for similar amounts of 
data. 

Data can be gathered from several sources, event monitoring applications such as Prometheus, IoT Sensors open 
data, historic data files. Data can be in batch or stream format and may have different scales of density among the 
features or time periods. This heterogeneity of data sources and rates makes data integration a difficult process. 
The data wrangler should make decisions on how the data features should be aligned. Some general directions are 
to use timestamps or the IDs of users and devices as key-values to join data records from different sources. The 
timestamps may not be strict timestamps but a relative time frame in which two or more observations are recorded. 

It is a common technique to discard some pieces of information in order to keep a smaller but reliable dataset. 
When collecting data from several sources, the records can carry mistakes, bad feature values, duplicate or null 
values. Setting the value ranges or the statistical properties of the values we can detect and filter out erroneous 
values. 

In the case of training predictive models with the dataset, we should pay attention to the skew between training 
and testing. This means we may have different accuracy at training time than serving time and the reason is not the 
underfitting or overfitting of the models. The reason may be that the data generators functions in the training 
process may have different statistical characteristics of the data generator functions in the serving process. This 
discrepancy in statistical characteristics can be subtle but it may have bad effects on the results. So, we should 
make sure that the training set is representative of the serving traffic even if it means that we should enrich the 
training dataset with new observations. A data augmentation process is not always recommended and we should 
experimentally evaluate if it is applicable. 

Data features can be classified into four categories depending on their type and the operations we can run on them. 
Nominal data refers to attributes whose values can only be distinguished as equal or unequal to each other. They 
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belong to the “Categorical Variables” category and some examples could be “Semantic POI” or “Protocol of 
Communication”. Another categorical attribute type is ordinal data, whose objects can also be ordered. This 
includes data such as “Period of day” or “cloud customer satisfaction on a scale from 1-10”. Some operation 
examples that can be run on nominal and ordinal data respectively are “entropy” and “median” 

Aside from Categorical attributes, data can also be numeric. In this category attributes can either be characterized 
as “Interval” or “Ratio”. In Interval attributes aside from ordering, the difference in values also has a clear meaning, 
and can be calculated using addition/subtraction. Common examples would be “temperature in Celsius” or 
“calendar dates”, and operations such as “mean” and “standard deviation” can be used. In Ratio variables, not only 
the differences but also the ratios have meaning. We can use multiplication/division on the data, with notable 
examples being “CPU usage” or “RAM usage”. “Geometric mean” and “percent variation” are some of the 
operations that can be used in this type of data. 
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4 DATA FEATURES  

Different Cloud/Edge stakeholders may have different objectives and need different data features. In this section, 
we provide an overview of data features used in research publications and technical manuscripts. The purpose of 
listing the candidate features is to be a reference point to the ACCORDION partners and cloud/edge stakeholders. 
First, we provide features related to applications and users. Next, we provide features related to infrastructure. In 
the end, we enlist features that do not belong in the previous two categories. Many of the terms do not have a 
formal definition and may have different uses in other documents. It is also important to mention that different 
corporations, institutes and labs may have different definitions for this terminology.  

In addition, some features exist in both application and infrastructure lists. This happens because the same term is 
used in both cases but measures a different quantity. As example the feature of RAM in the context of application 
means the RAM usage of the application that runs in an edge node. While the feature of RAM for a device means 
the total RAM usage of the device aggregating the operating system and all the applications that run concurrently.  
Last but not least, in some cases the characterization of the features as application or infrastructure related is in 
the eye of the beholder based on the functionalities of the Edge computing components. 

4.1 DATA FEATURES RELATED TO APPLICATIONS  

Applications may run on devices or offload their tasks to edge nodes and cloud infrastructures following a partial 
or full offloading policy. In both cases the applications have a set of features that characterize them as a function 
of the allocated resources and the workload. In the application characterization, we should take into consideration 
the workload fluctuation, the heterogeneity in edge devices and the dynamic behavior of the edge network.  In this 
section we cover the data features related to applications.  

•  Response time/latency 

Total time that is taken to respond to a specific application request 

• Availability of Application 

It is described as probability i.e., the system is functioning properly after it is requested for use 

• Memory usage  

The percentage of RAM memory used by the application compared to the total RAM available on the node 

• CPU usage 

Percentage of the time used by the main processor of the node in operations needed by the application. 
This feature is differentiated based on multiprocessing nodes and multithreading applications 

• Number of Disk I/O 

Number of application operations that require reading or writing to disk files on the host device. This 
feature is differentiated based on the granularity of data blocks in different storage media. 
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• DB transactions  

Number of application requests made to a database management system. They can be measured either in 
absolute numbers or as a rate i.e. per second or per minute 

• Time duration of Read/Write/Update data transactions  

Percentage of time that the application spends on different types of data transactions 

• Transfer time for data transactions  

The total time needed for all the data transactions of the application to be completed 

• Size of Transferred File  

Specific file sizes expressed in bytes get transferred by an application through the edge network 

• Time-Critical or Mission-Critical Application 

The feature of a software program regarding the requirement to respond within a specific timeframe. If the 
response is in a batch way it is called time critical application.  If the responses are provided continuously 
in a streaming way it is called mission critical application.  

• Location of data (Cloud/Edge/Cloudlet)  

Defines the availability of data shards in different locations of the infrastructure. 

• Adaptability 

The ability of all processes to automatically be executed according to different conditions 

• Throughput 

The number of tasks whose implementation has been completed successfully per time interval 

• Reliability 

The ability for an application to provide accurate or acceptable results in a certain time period 

• Usability 

The degree for a user to make use of an application and accomplish his goals with efficiency, effectiveness, 
and satisfaction 

• Other Application KPI 

Other application KPI such as: session length, session interval, number of crashes, number of active users, 
daily active users, user growth rate, user acquisition, user experience/happiness, average revenue per user 
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4.2 DATA FEATURES RELATED TO INFRASTRUCTURES  

• Availability of Resources  

This refers to the hardware resources (CPU, RAM, Bandwidth, Storage etc) that we have available at any 
given time 

• Type of IoT Devices (i.e., Sensor, Actuator, Computing Units, Gateway)   

An IoT Device is a piece of hardware mostly with a sensor that transmits data from one place to another 
over the Internet. Types of IoT devices may include wireless sensors, actuators, and processing nodes 

• Type of IoT Device Position (Static or Dynamic) 

This refers to whether an IoT Device remains at a fixed geolocation, or it can move (either while staying in 
the same edge network or not) 

• Mobility of devices/users in terms of PoIs or (Lat Lon)  

The geolocation (Latitude/Longitude) or the semantic aspects of a Point of Interests of device  

• IoT Device range of connectivity  

The maximum distance coverage that ensures a stable connection between the IoT Device and the edge 
network 

• Energy Consumption  

The amount of energy (in battery percentage or Watt-hours) that the devices use 

• The area in which IoT Devices roam or placed  

The bounds and the properties of the area of interest that cover the infrastructure 

• Cloud to Edge Data Transfer Vs Edge to Edge Data Transfer, or Edge to Cloudlet Data Transfer  

If we need to prioritize a means of data transfer vs another. 

• Computation and Communication Constraints 

All constraints placed by the device’s computational capabilities (CPU clock speed, RAM size etc) and the 
characteristics that define the network and the communication limits 

• Protocols That Will Be Used Such as Network Protocols, Wireless Protocols  

A set of standard protocols to be used by the device in correlation with its communication to the edge 
network 

• Incoming Requests   

Any requests to be handled by the device, made by outside sources (edge network)  
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• Network Data Transfer Speed   

How fast data is transmitted through the edge network 

• Transmitting data frequency 

How often do we need to transmit data over the edge network 

• Interference Between Applications That Coexist in the Same IoT Device   

Some applications might interfere with each other, e.g. by asking for access to sensors or using up resources 
at the same time 

• Objectives: Performance, Cost: Energy Consumption, Network Delay, Packet Dropouts   

If we have specific objectives to maximize or minimize  

• Peculiarities in the Network Structure (Some Nodes Must Be Always Close)  

Specific needs for some use cases regarding network topology 

• Constraints in Performance    

Maximum values of device CPU, memory, etc.  

• Changes in the Topology of Network Devices 

This refers to changes in the structure of the edge network and the way the devices inside the network are 
connected to each other 

• Time of Deployment (Software or Hardware)   

Time needed to setup the environment (Host, Virtual Machine, Application Container) to be ready for use 

• Time of Recoverability    

Time needed for the recovery of the system after a fault occurs 

• Any Type of Additional Infrastructure QoS/QoE Metrics 

Ways of measuring Quality of Service or experience (eg time to setup/migrate into a new datacenter) 

• Other Infrastructure QoS metrics  

Specific infrastructure metrics that focus on technical network characteristics, such as jittering 

• Fault-tolerance Overhead 

Determines the total overhead involved while running a fault-tolerance mechanism 
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4.3 GENERAL DATA FEATURES 

• Open data 

Open data is a useful source of information that we can leverage for reasoning and predictive mechanisms. 
In Edge computing literature, open data such as the weather, temperature and popularity of PoIs [2] have 
been used for workload modeling.   

• Cost 

The description of the system monetarily 
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5 FEATURE SELECTION 

Feature selection is the process of selecting a subset of the available features based on their relevancy to 
constructing a machine learning or statistical model. The most important reasons for using feature selection 
techniques include shorter training times, model simplification, and greater generalization. Feature selection 
techniques are often used in domains where there are many features and comparatively few samples. The following 
methods help us determine variable correlation in any kind of input and variable type i.e., numerical or categorical. 

 

Pearson’s 

The Pearson correlation coefficient [3] measures linear correlation between two variables X and Y. The result can 
indicate positive linear correlation (values close to 1), negative linear correlation (values close to -1 and no linear 
correlation (values close to 0). The formula used for a population of two variables X and Y is dividing the covariance 
of X and Y by the standard deviation of these variables multiplied. This method of feature selection applies to 
problems with numerical inputs and outputs, such as most regression problems. 

 

Spearman’s 

The Spearman correlation [4] between two variables is equal to the Pearson correlation between the rank values 
of those two variables. Pearson’s correlation only estimates linear relationships, and Spearman’s correlation 
estimates monotonic relationships, regardless of them being linear or non-linear. It is also applicable to numerical 
input-numerical output problems. 

 

ANOVA 

Analysis of variance (ANOVA) [5] is a collection of statistical models and their associated estimation procedures 
(such as the "variation" among and between groups) used to analyze the differences among group means in a 
sample. It can determine whether the means of three or more groups are different. ANOVA uses F-tests to 
statistically test the equality of means. The formula to compute the F-statistic in ANOVA is 

F=variation between sample means / variation within the samples 

An F-statistic is a ratio of two quantities that are expected to be roughly equal under the null hypothesis, which 
produces a result of approximately 1. The ANOVA correlation coefficient can be used in Numerical Input/Categorical 
Output problems, as well as in Categorical Input/Numerical Output problems, but in reverse.  

 

Kendall’s 

The Kendall rank coefficient [6] is often used to establish whether two variables may be regarded as statistically 
dependent. It can be used on the same types of problems as the ANOVA correlation coefficient. Kendall rank 
correlation coefficient computes the difference between the number of concordant and discordant pairs of two 
variables and divides that by the binomial coefficient. 
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The result of the Kendall rank coefficient will be in the range of (-1,1), with negative numbers representing a 
negative dependency, positive numbers representing a dependency, and values that approximate to zero 
suggesting that the two variables are independent. 

 
Chi-squared 

A chi-squared test [7] is a statistical hypothesis test valid to perform when the test statistic is chi-squared distributed 
under the null hypothesis. Pearson's chi-squared test is used to determine whether there is a statistically significant 
difference between the expected frequencies and the observed frequencies in one or more categories of a 
contingency table. 

To apply a chi-squared test, we first classify all observations into mutually exclusive classes. Supposing that there 
are no differences between the classes in the population, the test statistic computed from the observation should 
follow a “chi-squared” frequency distribution. Then the test will evaluate how likely the observed frequencies would 
be, if our initial assumption is true. 

 

Mutual Information 

The mutual information [8] of two random variables is a measure of mutual dependence between the two variables. 
It quantifies the amount of information obtained about one random variable through observing the other random 
variable. Mutual information, as well as Chi-squared test applies to problems with categorical inputs and outputs. 
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6 MONITORING TOOLS AND SCRIPTS 

Edge computing orchestration and decision-making components should have a monitoring system to provide timely 
and accurate information about the performance of infrastructure, the application behavior and the user behavior. 
Mostly the monitoring systems include a workload monitoring tool with an application logging mechanism or 
network sniffers [9] and a resource monitoring tool like Prometheus.  In ACCORDION project special emphasis has 
been given to the resource usage monitoring as a rich source of information that mirrors the status of the whole 
computing system. Monitoring tools can be available as software tools, ready for use after installation and 
configuration or manually developed as described in the following subsections. 

 

6.1 PROMETHEUS MONITORING TOOL 

In order to gather data, we can use Prometheus a popular open-source monitoring tool which uses a pull model to 
store metrics in a time series database. The metrics are stored in key value pair format. Prometheus by its own does 
have a big set of metrics, that’s why it uses various exporters to fetch statistics from non-Prometheus systems and 
convert them into Prometheus metrics. There are various exporters which give different monitoring information, 
for example:  

• node-exporter bare metal metrics for hardware and OS, it needs to be configured in every device that needs 
to be monitored.  

• In case of Kubernetes kube-state-metrics exposes critical metrics about the condition of a Kubernetes 
cluster, it generates them from the Kubernetes API. It focuses on the health of nodes, pods and 
deployments. The only requirement for this exporter is to have access to Kubernetes API. 

• For Docker container monitoring, cadvisor provides metrics for resource usage and characteristics of the 
running containers. It needs to be configured in every node that hosts containers. 

Prometheus to pull metrics from exporters must configure them as targets with static configuration in case of bare 
metal or with service discovery in case of Docker Swarm or Kubernetes. In each exporter the metrics can be found 
in the /metrics endpoint, it is an approach that Prometheus also follows. The metrics that are under /metrics 
endpoint of Prometheus configured on a K3s (Kubernetes Lightweight) cluster are shown in the below table.To 
query the time series database Prometheus has its own query language named PromQL, the results can be shown 
as a graph or as tabular data in Prometheus UI. The data types of PromQL are: 

• Instant Vector - a set of time series containing a single sample for each time series, all sharing the same 
timestamp 

• Range Vector - a set of time series containing a range of data points over time for each time series 
• Scalar - a simple numeric floating-point value 
• String - a simple string value; currently unused 

Depending on how the result is shown on as a graph or tabular data some data may not be valid, for example, an 
expression that returns an instant vector is the only type that can be directly graphed. PromQL also has basic logic, 
comparing, arithmetic and aggregation operators. For example, to calculate the CPU usage percentage of a by 
subtracting the idle usage from 100% the query would be:  
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100 - (avg by (instance) (irate(node_cpu_seconds_total{job="node",mode="idle"}[5m])) * 100) 

The irate is a counter to calculate the per-second values, job indicates that node_cpu_seconds_total is a metric 
from node-exporter, mode returns only the idle cpu metric values and avg aggregates the metric by device with the 
help of instance and calculates the five minutes average.  

Apart from Prometheus UI queries can also performed on the API /api/v1/query on a Prometheus server by adding 
them as URL parameters. In case of the Prometheus APΙ the response is in JSON format. For successful APΙ requests 
the returned status code is 2xx, invalid requests return a JSON error object and one of the following HTTP response 
codes: 

• 400 Bad Request when parameters are missing or incorrect. 
• 422 Unprocessable Entity when an expression can't be executed (RFC4918). 
• 503 Service Unavailable when queries time out or abort. 

In the appendix in table 5 are provided all the available data features that can monitor the Prometheus monitoring 
tool. 

6.2 MANUAL MONITORING RESOURCES 

Manual monitoring tools can be deployed and run to edge nodes. Specifically, we have developed a python script 
that combines the psutil [10] and GPUtil [11] libraries and enable us to register metrics about the CPU, RAM, 
network, HDD and GPU in real time, while the target processes are running. Due to its python nature, it is very 
lightweight, compatible with edge limitations. 

The script allows us to define a set of parameters during each runtime and fine-tuning the monitoring process. 
These parameters include the snapshot frequency of the metrics watched, the file size limit of the logs in order to 
more easily process the files, and three lists of excluded devices if we have any, one for each category of devices 
(HDD, GPU and Network). Table 1 shows an overview of the metrics we are monitoring, we are presenting for each 
function its name, its return type, its category and a short description: 
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Table 1 Metrics of Interest of manual monitoring tool 

All the data extracted by the monitoring tool are separated by category and converted in JSON format for uniformity 
and easier usage during the next steps of the modeling process. A JSON schema example is available in table 2. 

 

Table 2. JSON of Profiling Features 
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6.3 MANUAL MONITORING GEOLOCATION 

In edge computing, the geolocation of a device in the network is often useful information, especially in cases where 
the various devices are not in some fixed place, but can move around (such as cellphones, laptops etc). Monitoring 
the geolocation of such devices may allow us to provide better support against QoS deterioration, or even offer 
special features, depending on the case. 

In that regard, one option is to use IP address location tracking (via some Python packages such as GeoCoder[12]  
which can easily acquire the approximate geolocation of any device that is connected to the network. The drawback 
of this option is that the accuracy of the results will not be good enough to determine the exact position, but rather 
an approximation that could help determine a wider area the device is located in. 

Devices that have a GPS sensor installed, can be tracked by using the information the sensor provides, with the use 
of an API such as Plyer [13], depending on the platform and the device’s operating system. Geolocation information 
acquired via GPS will give much more accurate results and will allow us to monitor the user’s movements in greater 
detail, in order to ensure better Quality of Experience, assisting towards goals such as better connectivity. 
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7  ASSOCIATION OF COMPONENTS WITH DATA FEATURES AND THEIR 
CHARACTERISTICS  

7.1 RESOURCE INDEXING & DISCOVERY 

The aim of “Resource Indexing and Discovery” (RID) component is to keep an up-to-date view on the status of 
computational resources among the various miniclouds. The data is read from the monitoring functionalities and 
uses the same data model that is described in the next sections. The data is distributed among the available 
miniclouds in a way to optimize the efficiency of the retrieval and, at the same time, minimize the disruption if a 
minicloud becomes unavailable.   

In fact, the RID component does not produce new data. Also, the RID service is mostly agnostic about the nature of 
the data, but its implementation can be configured according to the frequency of its updates. The RID component 
also provides a service that allows us to extract information about the required resources by running queries on 
stored data. Such queries can in principle come from any ACCORDION component that wants to find resources with 
specific computational features or characteristics. 

 

7.2 EDGE STORAGE 

The edge storage component is responsible for the management of storage nodes and data storage and transfer 
on the edge mini-clouds. In order to create optimized policies for these data storage and retrieval tasks the 
component needs some data related to the resource usage, functionality and infrastructure wellbeing of the 
storage nodes and the applications that request the data. The component will use these data in order to plan and 
enact policies concerning the hardware and software architecture, the data storage locations, the data cache and 
the data access rights.  

In order to plan the policies and architectures and create models for real time and predictive corrections and 
optimizations to these policies we need at least the data described in table 3: 

 Type Variable Continuous Monitoring Monitoring System 

Node_ID Nominal String ✅ Prometheus 

Node_I/O Interval Float ✅ Prometheus 

Node_RAM Interval Float ✅ Prometheus 

Node_CPU Interval Float ✅ Prometheus 

Node_Network Interval Float ✅ Prometheus 
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Node_Alive Interval Boolean ✅ Prometheus 

Node_HDD Interval Float ✅ Prometheus 

Table 3. Edge Storage Data Requirements 

 

7.3 INTELLIGENT, ADAPTIVE RESOURCE ORCHESTRATION 

The Intelligent adaptive resource orchestrator will leverage a resource model and an application model. The 
resource model will be modeled as a graph and the application model will follow a systematic structure with 
constraints. In addition, it will take input from data sources of channels and buses that provide information relevant 
to for static and dynamic features of the two. Until the link of the Intelligent adaptive resource orchestrator with 
the monitoring section public datasets will be used to estimate the needs of the experimental phase. The data 
output will be related to orchestrator distributed implementation and they will follow a detailed 
deployment/reaction plan for each application submitted. 

 

7.4 AI-BASED NETWORK ORCHESTRATION  

The aim of this task, task 4.2, is to design and develop a multi-domain AI-based orchestration framework of the 
network elements by ensuring reliability and latency. This component provides an automated orchestration and 
intelligent management operations and facilitates the life cycle management of the network slices with the aim of 
a rapid slice creation and activation, enabling application developers, UC owners (In the case of ACCORDION: 
ORAMA VR, ORBK and PLEXUS) to define blueprints for their VR/AR ready slices.  This component relies on 
monitoring the compute and network resources at the edge for any potential QoS degradation (e.g., congested 
links, node capacity excess, etc.) and accordingly predicting the network and computing requirements in real-time 
that fix these issues and guarantee the application requirements. 

This task investigates machine learning techniques and their integration, in order to allow self-configuration and 
self-optimization capabilities of compute and network resources at the edge. This includes the study of 
decentralized VR/AR applications, and collect and process various types of data, preparing the ground for intelligent 
slice deployment. For the training phase, we will rely on our own datasets, collected by deploying either VR/AR 
applications or use UCs’ applications in our testbed. The full spectrum of collected data will be provided in the WP4 
and at this stage of the project, we cannot provide these datasets in detail.  

 

7.5 RESILIENCE POLICIES & MECHANISMS 

The Resilience policies & mechanisms (RPM) component provides a proactive fault tolerance model using data 
features related with the resource usage and the mobility. The Mobile aware FT mechanism uses a next position 
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predictor that estimates the geo-location (lat, lon) of a mobile entity in an area of interest in the next time frames. 
If the mobile entity will be out of the coverage of the Edge infrastructure or there will be a high distribution of 
mobile entities around a specific Point of interest, then the FT mechanism will predict potential QoS deterioration 
and trigger proactive measures. The proactive measure will be an intelligent replication (hot/cold migration) that 
meets the geographical needs of the Edge environment.   

The Resource utilization aware FT mechanism will monitor the resources usage that runs on each hybrid edge 
minicloud in order to reveal at run-time, potential QoS degradation. In case that the deployed resources cannot 
satisfy the increasing amount of resources usage on the next predicted time steps, then the middleware will trigger 
mitigation policies such as hot- and cold-migration between neighboring hybrid edge miniclouds and processing 
edge nodes. 

For these two mechanisms there is a need for training and evaluating dataset that can be provided to one or more 
CSV files (or any equivalent data file). The dataset should contain the features described in the table 4 and the time 
Interval can be 60 sec. 

 

 Type Variable Continuous Monitoring Monitoring System 

Device_ID Nominal String ✅ Manual Script 

Device_Type Nominal String ✅ Manual Script 

Device_Latitude Interval Float ✅ Manual Script 

Device_Longitude Interval Float ✅ Manual Script 

Timestamp Ordinal Float ✅ Manual Script 

POI_ID Nominal String  File 

POI_Semantic 
Aspects 

Composite of 
Nominals 

  File 

POI_Latitude Interval Float  File 

POI_Longitude Interval Float  File 

Edge_ID_CPU_usage Ratio Float ✅ Prometheus 

Edge_ID_RAM_usage Ratio Float ✅ Prometheus 
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Edge_BW Ratio Float ✅ Prometheus 

Edge_ID_I/O Ratio Float ✅ Prometheus 

Table 4. Fault Tolerance Data Requirements 

7.6 PRIVACY PRESERVING MECHANISMS 

The privacy-preserving component (PPC) is responsible for guaranteeing users' privacy at various levels within the 
Accordion infrastructure. This component will carry out (at least) three functions. First, PPC will provide the 
necessary mechanisms to ensure that containers can be correctly executed atop a network infrastructure without 
the network administrators being able to infer any information about them (e.g., which type of application runs 
inside them). Second, PPC will enable the generation of machine learning (ML) models that provide high accuracy 
while at the same time being resistant to attacks that aim to infer private information from the ML model. PPC will 
also contain privacy-preserving mechanisms suitable for federated learning. Finally, PPC will allow the detection of 
user data leakage to unauthorised third parties by passively or actively monitoring users on devices and user 
components (e.g., browsers, containers, etc.). 

 In order to develop the above-mentioned mechanisms, we require to collect, analyse and process various types of 
data. In all cases, we will rely on our own datasets. For the privacy-preserving execution of containers, we envision 
a scenario where containers run in a confidential and isolated manner protected by a trusted execution 
environment (TEE). However, this approach does not protect the interactions between the container and the host 
kernel, which, based on our hypothesis, could become a unique fingerprint for containers. To test our hypothesis 
and eliminate the fingerprint (if it exists), we will crawl the Docker hub website in order to obtain the names of 
many popular container images, then run each of the container images separately in order to collect and analyse 
their syscalls patterns. Similarly, to detect user data leakage, we will collect the data exchanged between different 
entities and analyse the obtained information at distinct levels (e.g., in the application or network layer). This 
includes plaintext and encrypted data collected while users browse the Web or when containers communicate with 
each other (among others). Finally, we envisage the design and implementation of generic techniques -- that can 
be combined with other technologies such as TEEs -- to produce privacy-preserving ML models that provide high 
accuracy without incurring a high overhead. The proposed techniques can then be adjusted to fit the needs of a 
specific ML task within the Accordion infrastructure. 

 

7.7 DYNAMIC QOE ASSESSMENT 

For quality assessment task, the data will be collected once during the development of model through subjective 
experiment, and once the model is developed and employed in the accordion framework. For the training phase, 
subjective data will be collected according to the ethic policy at the host institute. The data that is collected is 
subjective ratings in scale of 1 to 7 which is the judgement of users about the quality features of service or 
application that the ser experienced. In addition, some demographic information will be collected prior to the 
experiment such as age, gender, and level of experience to the test service or application. It has to be noted that 
the consent form to collect the data for research purposes will be given to the participant before the start of the 
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test. It has to be noted that no personal information that can link the participants to their collected data will be 
gathered, e.g., name or phone number.   

For testing the model in the accordion framework, depends on the application, network parameters, encoding 
parameters, and client information might be collected. The full spectrum of collected data will be provided in the 
WP6 report and at this stage of the project cannot be determined in detail.   
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8 CONCLUSIONS 

In the report of the data requirements analysis and collection, we discussed the importance of quality data for 
timely and effective decision making and orchestration in Edge computing infrastructures. Deep learning and 
Artificial Intelligence mechanisms are data driven models that provide accurate results based on the quality of their 
training data. So, we described the steps that we should follow in order to construct the appropriate datasets for 
each component, how to filter the important data features and discard the features that are not related to the 
target of the models.  

In the context of Edge computing systems, we presented the monitoring tools which we can use in the ACCORDION 
project and specifically the Prometheus monitoring tool. The monitoring tools are the valuable sources that we can 
use to record the features of interest. In the last section we presented the ACCORDION components that have data 
requirements and the description of the data they need.  
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APPENDIX A. PROMETHEUS METRICS 

 

METRICS SUMMARY 

go_gc_duration_seconds A summary of the pause 
duration of garbage collection 
cycles. 

go_goroutines Number of goroutines that 
currently exist. 

go_info Information about the Go 
environment. 

go_memstats_alloc_bytes Number of bytes allocated and 
still in use. 

go_memstats_alloc_bytes_total Total number of bytes allocated, 
even if freed. 

go_memstats_buck_hash_sys_bytes Number of bytes used by the 
profiling bucket hash table. 

go_memstats_frees_total Total number of frees. 

go_memstats_gc_cpu_fraction The fraction of this program's 
available CPU time used by the 
GC since the program started. 

go_memstats_gc_sys_bytes Number of bytes used for 
garbage collection system 
metadata. 

go_memstats_heap_alloc_bytes Number of heap bytes allocated 
and still in use. 

go_memstats_heap_idle_bytes Number of heap bytes waiting to 
be used. 

go_memstats_heap_inuse_bytes Number of heap bytes that are 
in use. 

go_memstats_heap_objects Number of allocated objects. 

go_memstats_heap_released_bytes Number of heap bytes released 
to OS. 

go_memstats_heap_sys_bytes Number of heap bytes obtained 
from system. 

go_memstats_last_gc_time_seconds Number of seconds since 1970 
of last garbage collection. 

go_memstats_lookups_total Total number of pointer lookups. 

go_memstats_mallocs_total Total number of mallocs. 
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go_memstats_mcache_inuse_bytes Number of bytes in use by 
mcache structures. 

go_memstats_mcache_sys_bytes Number of bytes used for 
mcache structures obtained 
from system. 

go_memstats_mspan_inuse_bytes Number of bytes in use by 
mspan structures. 

go_memstats_mspan_sys_bytes Number of bytes used for 
mspan structures obtained from 
system. 

go_memstats_next_gc_bytes Number of heap bytes when 
next garbage collection will take 
place. 

go_memstats_other_sys_bytes Number of bytes used for other 
system allocations. 

go_memstats_stack_inuse_bytes Number of bytes in use by the 
stack allocator. 

go_memstats_stack_sys_bytes Number of bytes obtained from 
system for stack allocator. 

go_memstats_sys_bytes Number of bytes obtained from 
system. 

go_threads Number of OS threads created. 

net_conntrack_dialer_conn_attempted_total Total number of connections 
attempted by the given dialer a 
given name. 

net_conntrack_dialer_conn_closed_total Total number of connections 
closed which originated from the 
dialer of a given name. 

net_conntrack_dialer_conn_established_total Total number of connections 
successfully established by the 
given dialer a given name. 

net_conntrack_dialer_conn_failed_total Total number of connections 
failed to dial by the dialer a 
given name. 

net_conntrack_listener_conn_accepted_total Total number of connections 
opened to the listener of a given 
name. 

net_conntrack_listener_conn_closed_total Total number of connections 
closed that were made to the 
listener of a given name. 

process_cpu_seconds_total Total user and system CPU time 
spent in seconds. 
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process_max_fds Maximum number of open file 
descriptors. 

process_open_fds Number of open file descriptors. 

process_resident_memory_bytes Resident memory size in bytes. 

process_start_time_seconds Start time of the process since 
unix epoch in seconds. 

process_virtual_memory_bytes Virtual memory size in bytes. 

process_virtual_memory_max_bytes Maximum amount of virtual 
memory available in bytes. 

prometheus_api_remote_read_queries The current number of remote 
read queries being executed or 
waiting. 

prometheus_build_info A metric with a constant '1' 
value labeled by version, 
revision, branch, and goversion 
from which prometheus was 
built. 

prometheus_config_last_reload_success_timestamp_seconds Timestamp of the last 
successful configuration reload. 

prometheus_config_last_reload_successful Whether the last configuration 
reload attempt was successful. 

prometheus_engine_queries The current number of queries 
being executed or waiting. 

prometheus_engine_queries_concurrent_max The max number of concurrent 
queries. 

prometheus_engine_query_duration_seconds Query timings 

prometheus_engine_query_log_enabled State of the query log. 

prometheus_engine_query_log_failures_total The number of query log 
failures. 

prometheus_http_request_duration_seconds Histogram of latencies for HTTP 
requests. 

prometheus_http_requests_total Counter of HTTP requests. 

prometheus_http_response_size_bytes Histogram of response size for 
HTTP requests. 

prometheus_notifications_alertmanagers_discovered The number of alertmanagers 
discovered and active. 

prometheus_notifications_dropped_total Total number of alerts dropped 
due to errors when sending to 
Alertmanager. 
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prometheus_notifications_errors_total Total number of errors sending 
alert notifications. 

prometheus_notifications_latency_seconds Latency quantiles for sending 
alert notifications. 

prometheus_notifications_queue_capacity The capacity of the alert 
notifications queue. 

prometheus_notifications_queue_length The number of alert notifications 
in the queue. 

prometheus_notifications_sent_total Total number of alerts sent. 

prometheus_remote_storage_highest_timestamp_in_seconds Highest timestamp that has 
come into the remote storage 
via the Appender interface, in 
seconds since epoch. 

prometheus_remote_storage_samples_in_total Samples in to remote storage, 
compare to samples out for 
queue managers. 

prometheus_remote_storage_string_interner_zero_reference_releases_total The number of times release 
has been called for strings that 
are not interned. 

prometheus_rule_evaluation_duration_seconds The duration for a rule to 
execute. 

prometheus_rule_evaluation_failures_total The total number of rule 
evaluation failures. 

prometheus_rule_evaluations_total The total number of rule 
evaluations. 

prometheus_rule_group_duration_seconds The duration of rule group 
evaluations. 

prometheus_rule_group_interval_seconds The interval of a rule group. 

prometheus_rule_group_iterations_missed_total The total number of rule group 
evaluations missed due to slow 
rule group evaluation. 

prometheus_rule_group_iterations_total The total number of scheduled 
rule group evaluations, whether 
executed or missed. 

prometheus_rule_group_last_duration_seconds The duration of the last rule 
group evaluation. 

prometheus_rule_group_last_evaluation_timestamp_seconds The timestamp of the last rule 
group evaluation in seconds. 

prometheus_rule_group_rules The number of rules. 

prometheus_sd_consul_rpc_duration_seconds The duration of a Consul RPC 
call in seconds. 
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prometheus_sd_consul_rpc_failures_total The number of Consul RPC call 
failures. 

prometheus_sd_discovered_targets Current number of discovered 
targets. 

prometheus_sd_dns_lookup_failures_total The number of DNS-SD lookup 
failures. 

prometheus_sd_dns_lookups_total The number of DNS-SD 
lookups. 

prometheus_sd_failed_configs Current number of service 
discovery configurations that 
failed to load. 

prometheus_sd_file_read_errors_total The number of File-SD read 
errors. 

prometheus_sd_file_scan_duration_seconds The duration of the File-SD scan 
in seconds. 

prometheus_sd_kubernetes_events_total The number of Kubernetes 
events handled. 

prometheus_sd_kubernetes_http_request_duration_seconds Summary of latencies for HTTP 
requests to the Kubernetes API 
by endpoint. 

prometheus_sd_kubernetes_http_request_total Total number of HTTP requests 
to the Kubernetes API by status 
code. 

prometheus_sd_kubernetes_workqueue_depth Current depth of the work 
queue. 

prometheus_sd_kubernetes_workqueue_items_total Total number of items added to 
the work queue. 

prometheus_sd_kubernetes_workqueue_latency_seconds How long an item stays in the 
work queue. 

prometheus_sd_kubernetes_workqueue_longest_running_processor_seconds Duration of the longest running 
processor in the work queue. 

prometheus_sd_kubernetes_workqueue_unfinished_work_seconds How long an item has remained 
unfinished in the work queue. 

prometheus_sd_kubernetes_workqueue_work_duration_seconds How long processing an item 
from the work queue takes. 

prometheus_sd_received_updates_total Total number of update events 
received from the SD providers. 

prometheus_sd_updates_delayed_total Total number of update events 
that couldn't be sent 
immediately. 

prometheus_sd_updates_total Total number of update events 
sent to the SD consumers. 

DRAFT



ACCORDION – G.A. 871793   

 

D2.4 Data requirements analysis and collection                                                                                Page 42 of 46 

prometheus_target_interval_length_seconds Actual intervals between 
scrapes. 

prometheus_target_metadata_cache_bytes The number of bytes that are 
currently used for storing metric 
metadata in the cache 

prometheus_target_metadata_cache_entries Total number of metric 
metadata entries in the cache 

prometheus_target_scrape_pool_reloads_failed_total Total number of failed scrape 
loop reloads. 

prometheus_target_scrape_pool_reloads_total Total number of scrape loop 
reloads. 

prometheus_target_scrape_pool_sync_total Total number of syncs that were 
executed on a scrape pool. 

prometheus_target_scrape_pools_failed_total Total number of scrape pool 
creations that failed. 

prometheus_target_scrape_pools_total Total number of scrape pool 
creation attempts. 

prometheus_target_scrapes_cache_flush_forced_total How many times a scrape 
cache was flushed due to 
getting big while scrapes are 
failing. 

prometheus_target_scrapes_exceeded_sample_limit_total Total number of scrapes that hit 
the sample limit and were 
rejected. 

prometheus_target_scrapes_sample_duplicate_timestamp_total Total number of samples 
rejected due to duplicate 
timestamps but different values 

prometheus_target_scrapes_sample_out_of_bounds_total Total number of samples 
rejected due to timestamp 
falling outside of the time 
bounds 

prometheus_target_scrapes_sample_out_of_order_total Total number of samples 
rejected due to not being out of 
the expected order 

prometheus_target_sync_length_seconds Actual interval to sync the 
scrape pool. 

prometheus_template_text_expansion_failures_total The total number of template 
text expansion failures. 

prometheus_template_text_expansions_total The total number of template 
text expansions. 

prometheus_treecache_watcher_goroutines The current number of watcher 
goroutines. 
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prometheus_treecache_zookeeper_failures_total The total number of ZooKeeper 
failures. 

prometheus_tsdb_blocks_loaded Number of currently loaded data 
blocks 

prometheus_tsdb_checkpoint_creations_failed_total Total number of checkpoint 
creations that failed. 

prometheus_tsdb_checkpoint_creations_total Total number of checkpoint 
creations attempted. 

prometheus_tsdb_checkpoint_deletions_failed_total Total number of checkpoint 
deletions that failed. 

prometheus_tsdb_checkpoint_deletions_total Total number of checkpoint 
deletions attempted. 

prometheus_tsdb_compaction_chunk_range_seconds Final time range of chunks on 
their first compaction 

prometheus_tsdb_compaction_chunk_samples Final number of samples on 
their first compaction 

prometheus_tsdb_compaction_chunk_size_bytes Final size of chunks on their first 
compaction 

prometheus_tsdb_compaction_duration_seconds Duration of compaction runs 

prometheus_tsdb_compaction_populating_block Set to 1 when a block is 
currently being written to the 
disk. 

prometheus_tsdb_compactions_failed_total Total number of compactions 
that failed for the partition. 

prometheus_tsdb_compactions_skipped_total Total number of skipped 
compactions due to disabled 
auto compaction. 

prometheus_tsdb_compactions_total Total number of compactions 
that were executed for the 
partition. 

prometheus_tsdb_compactions_triggered_total Total number of triggered 
compactions for the partition. 

prometheus_tsdb_head_active_appenders Number of currently active 
appender transactions 

prometheus_tsdb_head_chunks Total number of chunks in the 
head block. 

prometheus_tsdb_head_chunks_created_total Total number of chunks created 
in the head 

prometheus_tsdb_head_chunks_removed_total Total number of chunks 
removed in the head 
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prometheus_tsdb_head_gc_duration_seconds Runtime of garbage collection in 
the head block. 

prometheus_tsdb_head_max_time Maximum timestamp of the 
head block. The unit is decided 
by the library consumer. 

prometheus_tsdb_head_max_time_seconds Maximum timestamp of the 
head block. 

prometheus_tsdb_head_min_time Minimum time bound of the 
head block. The unit is decided 
by the library consumer. 

prometheus_tsdb_head_min_time_seconds Minimum time bound of the 
head block. 

prometheus_tsdb_head_samples_appended_total Total number of appended 
samples. 

prometheus_tsdb_head_series Total number of series in the 
head block. 

prometheus_tsdb_head_series_created_total Total number of series created 
in the head 

prometheus_tsdb_head_series_not_found_total Total number of requests for 
series that were not found. 

prometheus_tsdb_head_series_removed_total Total number of series removed 
in the head 

prometheus_tsdb_head_truncations_failed_total Total number of head 
truncations that failed. 

prometheus_tsdb_head_truncations_total Total number of head 
truncations attempted. 

prometheus_tsdb_isolation_high_watermark The highest TSDB append ID 
that has been given out. 

prometheus_tsdb_isolation_low_watermark The lowest TSDB append ID 
that is still referenced. 

prometheus_tsdb_lowest_timestamp Lowest timestamp value stored 
in the database. The unit is 
decided by the library 
consumer. 

prometheus_tsdb_lowest_timestamp_seconds Lowest timestamp value stored 
in the database. 

prometheus_tsdb_mmap_chunk_corruptions_total Total number of memory-
mapped chunk corruptions. 

prometheus_tsdb_out_of_bound_samples_total Total number of out of bound 
samples ingestion failed 
attempts. 
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prometheus_tsdb_out_of_order_samples_total Total number of out of order 
samples ingestion failed 
attempts. 

prometheus_tsdb_reloads_failures_total Number of times the database 
failed to reload block data from 
disk. 

prometheus_tsdb_reloads_total Number of times the database 
reloaded block data from disk. 

prometheus_tsdb_retention_limit_bytes Max number of bytes to be 
retained in the tsdb blocks, 
configured 0 means disabled 

prometheus_tsdb_size_retentions_total The number of times that blocks 
were deleted because the 
maximum number of bytes was 
exceeded. 

prometheus_tsdb_storage_blocks_bytes The number of bytes that are 
currently used for local storage 
by all blocks. 

prometheus_tsdb_symbol_table_size_bytes Size of symbol table on disk (in 
bytes) 

prometheus_tsdb_time_retentions_total The number of times that blocks 
were deleted because the 
maximum time limit was 
exceeded. 

prometheus_tsdb_tombstone_cleanup_seconds The time taken to recompact 
blocks to remove tombstones. 

prometheus_tsdb_vertical_compactions_total Total number of compactions 
done on overlapping blocks. 

prometheus_tsdb_wal_completed_pages_total Total number of completed 
pages. 

prometheus_tsdb_wal_corruptions_total Total number of WAL 
corruptions. 

prometheus_tsdb_wal_fsync_duration_seconds Duration of WAL fsync. 

prometheus_tsdb_wal_page_flushes_total Total number of page flushes. 

prometheus_tsdb_wal_segment_current WAL segment index that TSDB 
is currently writing to. 

prometheus_tsdb_wal_truncate_duration_seconds Duration of WAL truncation. 

prometheus_tsdb_wal_truncations_failed_total Total number of WAL 
truncations that failed. 

prometheus_tsdb_wal_truncations_total Total number of WAL 
truncations attempted. 
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prometheus_tsdb_wal_writes_failed_total Total number of WAL writes that 
failed. 

prometheus_web_federation_errors_total Total number of errors that 
occurred while sending 
federation responses. 

prometheus_web_federation_warnings_total Total number of warnings that 
occurred while sending 
federation responses. 

promhttp_metric_handler_requests_in_flight Current number of scrapes 
being served. 

promhttp_metric_handler_requests_total Total number of scrapes by 
HTTP status code. 

Table 5. Prometheus Metrics 

DRAFT




